

LabJack U6 (-Pro) User’s Guide

Revision 0.99
November 3rd, 2009

LabJack Corporation

www.labjack.com
support@labjack.com

mailto:support@labjack.com

For the latest version of this and other documents, go to www.labjack.com.

LabJack designs and manufactures measurement and automation peripherals that enable the
connection of a PC to the real-world. Although LabJacks have various redundant protection
mechanisms, it is possible, in the case of improper and/or unreasonable use, to damage the
LabJack and even the PC to which it is connected. LabJack Corporation will not be liable for
any such damage.

Except as specified herein, LabJack Corporation makes no warranties, express or implied,
including but not limited to any implied warranty or merchantability or fitness for a particular
purpose. LabJack Corporation shall not be liable for any special, indirect, incidental or
consequential damages or losses, including loss of data, arising from any cause or theory.

LabJacks and associated products are not designed to be a critical component in life support or
systems where malfunction can reasonably be expected to result in personal injury. Customers
using these products in such applications do so at their own risk and agree to fully indemnify
LabJack Corporation for any damages resulting from such applications.

LabJack assumes no liability for applications assistance or customer product design.
Customers are responsible for their applications using LabJack products. To minimize the risks
associated with customer applications, customers should provide adequate design and
operating safeguards.

Reproduction of products or written or electronic information from LabJack Corporation is
prohibited without permission. Reproduction of any of these with alteration is an unfair and
deceptive business practice.

Copyright © 2009, LabJack Corporation

Declaration of Conformity

Manufacturers Name: LabJack Corporation
Manufacturers Address: 3232 S Vance St STE 100, Lakewood, CO 80227, USA

Declares that the product

Product Name: LabJack U6 (-Pro)
Model Number: LJU6 (-Pro)

conforms to the following Product Specifications:

EMC Directive: 89/336/EEC

EN 55011 Class A
EN 61326-1: General Requirements

and is marked with CE

 2

http://www.labjack.com/

Warranty:

The LabJack U6 comes with a 1 year limited warranty from LabJack Corporation, covering this
product and parts against defects in material or workmanship. The LabJack can be damaged
by misconnection (such as connecting 120 VAC to any of the screw terminals), and this
warranty does not cover damage obviously caused by the customer. If you have a problem,
contact support@labjack.com for return authorization. In the case of warranty repairs, the
customer is responsible for shipping to LabJack Corporation, and LabJack Corporation will pay
for the return shipping.

LabJack U6 User’s Guide Revision History

…

 3

Table Of Contents

1. Installation on Windows ...7

1.1 Control Panel Application (LJControlPanel) ...8
1.2 Self-Upgrade Application (LJSelfUpgrade)...10

2. Hardware Description...12
2.1 USB ..12
2.2 Power and Status LED ...13
2.3 GND and SGND ...13
2.4 Vs ...13
2.5 10UA and 200UA..14
2.6 AIN..15

2.6.1 Channel Numbers ..15
2.6.2 Converting Binary Readings to Voltages ...17
2.6.3 Typical Analog Input Connections ...18
2.6.4 Internal Temperature Sensor ...24

2.7 DAC..24
2.7.1 Typical Analog Output Connections..25

2.8 Digital I/O..26
2.8.1 Typical Digital I/O Connections...27

2.9 Timers/Counters ...31
2.9.1 Timer Mode Descriptions ..33
2.9.2 Timer Operation/Performance Notes ..37

2.10 SPC (or VSPC)...38
2.11 DB37...38

2.11.1 CB37 Terminal Board ...39
2.11.2 EB37 Experiment Board ...39

2.12 DB15...39
2.12.1 CB15 Terminal Board ...40
2.12.2 RB12 Relay Board ..40

2.13 OEM Connector Options ..41
3. Operation ...42

3.1 Command/Response..42
3.2 Stream Mode..43

3.2.1 Streaming Digital Inputs, Timers, and Counters ...44
4. LabJackUD High-Level Driver..45

4.1 Overview...45
4.1.1 Function Flexibility ...47
4.1.2 Multi-Threaded Operation ..48

4.2 Function Reference ..50
4.2.1 ListAll() ...50
4.2.2 OpenLabJack() ..51
4.2.3 eGet() and ePut() ...52
4.2.4 eAddGoGet()..53
4.2.5 AddRequest()...53
4.2.6 Go()..54
4.2.7 GoOne() ...55
4.2.8 GetResult()...55
4.2.9 GetFirstResult() and GetNextResult()..56
4.2.10 DoubleToStringAddress() ..57
4.2.11 StringToDoubleAddress() ..57
4.2.12 StringToConstant()...58
4.2.13 ErrorToString() ...58
4.2.14 GetDriverVersion() ...59

 iv

4.2.15 TCVoltsToTemp() ..59
4.2.16 ResetLabJack()..59
4.2.17 eAIN()...60
4.2.18 eDAC() ...60
4.2.19 eDI() ...61
4.2.20 eDO() ...61
4.2.21 eTCConfig() ...62
4.2.22 eTCValues()...63

4.3 Example Pseudocode...64
4.3.1 Open ...64
4.3.2 Configuration...64
4.3.3 Analog Inputs ..65
4.3.4 Analog Outputs ...66
4.3.5 Digital I/O ..66
4.3.6 Timers & Counters ..67
4.3.7 Stream Mode ..69
4.3.8 Raw Output/Input ..73
4.3.9 Easy Functions ...73
4.3.10 SPI Serial Communication ..75
4.3.11 I2C Serial Communication...76
4.3.12 Asynchronous Serial Communication ...77
4.3.13 Watchdog Timer..78
4.3.14 Miscellaneous ...79

4.4 Errorcodes..81
5. Low-Level Function Reference ..84

5.1 General Protocol...84
5.2 Low-Level Functions...87

5.2.1 BadChecksum..87
5.2.2 ConfigU6..88
5.2.3 ConfigIO...90
5.2.4 ConfigTimerClock ..91
5.2.5 Feedback ...92
5.2.6 ReadMem (ReadCal) ...101
5.2.7 WriteMem (WriteCal) ...102
5.2.8 EraseMem (EraseCal) ...103
5.2.9 SetDefaults (SetToFactoryDefaults) ..104
5.2.10 ReadDefaults ...105
5.2.11 Reset..106
5.2.12 StreamConfig ...107
5.2.13 StreamStart..109
5.2.14 StreamData..110
5.2.15 StreamStop..111
5.2.16 Watchdog...112
5.2.17 SPI ...114
5.2.18 AsynchConfig...116
5.2.19 AsynchTX...117
5.2.20 AsynchRX ..118
5.2.21 I2C ...119
5.2.22 SHT1X ...121

5.3 Errorcodes..122
A. Specifications...124
B. Noise & Resolution Tables ..127
C. Enclosure & PCB Drawings...130

 v

Table Of Figures

Figure 1-1. LJControlPanel Device Window ..8
Figure 1-2. LJControlPanel U6 Configure Defaults Window..9
Figure 1-3. LJControlPanel U6 Test Window...9
Figure 1-4. LJControlPanel Settings Window ..10
Figure 1-5. Self-Upgrade Application ...11
Figure 2-1. LabJack U6..12
Figure 2-2. Typical Temperature Coefficient of the 10UA Source ...14
Figure 2-3. Typical Temperature Coefficient of the 200UA Source ...15
Table 2-1. Positive Channel Numbers ...16
Table 2-2. Negative Channel Numbers..16
Figure 2-4. Typical External Multiplexer Connections (Wrong Mux Shown!)16
Table 2-3. Expanded Channel Mapping...17
Table 2-4. Nominal Analog Input Voltage Ranges ...17
Figure 2-5. Non-Inverting Op-Amp Configuration ..20
Figure 2-6. Voltage Divider Circuit ...21
Figure 2-7. Buffered Voltage Divider Circuit...22
Figure 2-8. Current Measurement With Arbitrary Load or 2-Wire 4-20 mA Sensor23
Figure 2-9. Current Measurement With 3-Wire 4-20 mA (Sourcing) Sensor23
Figure 2-10. ±10 Volt DAC Output Circuit..26
Figure 2-11. Driven Signal Connection To Digital Input ...28
Figure 2-12. Open-Collector (NPN) Connection To Digital Input ...29
Figure 2-13. Basic Mechanical Switch Connection To Digital Input...29
Figure 2-14. Passive Hardware Debounce ..30
Figure 2-15. Relay Connections (Sinking Control, High-Side Load Switching)..........................30
Table 3-1. Typical Feedback Function Execution Times (+/-10 volt range)42
Table 3-4. Stream Performance (+/-10 volt range) ..43
Table 3-5. Special Stream Channels ...44
Table 4-1. Request Level Errorcodes (Part 1) ...81
Table 4-2. Request Level Errorcodes (Part 2) ...82
Table 4-3. Group Level Errorcodes..83

 vi

1. Installation on Windows
The UD driver requires a PC running Windows XP or Vista. For other operating systems, go to
labjack.com for available support. Software will be installed to the LabJack directory which
defaults to c:\Program Files\LabJack\.

Install the software first: Install the software using the CD or by downloading the latest UD
installer from labjack.com. Although all necessary software is available at labjack.com, do not
discard the CD as it includes a fully licensed copy of DAQFactory Express which is not available
by download.

Connect the USB cable: The USB cable provides data and power. After the UD software
installation is complete, connect the hardware and Windows should prompt with “Found New
Hardware” and shortly after the Found New Hardware Wizard will open. When the Wizard
appears allow Windows to install automatically by accepting all defaults.

Run LJControlPanel: From the Windows Start Menu, go to the LabJack group and run
LJControlPanel. Click the “Find Devices” button, and an entry should appear for the connected
U6 showing the serial number. Click on the “USB – 1” entry below the serial number to bring up
the U6 configuration panel. Click on “Test” in the configuration panel to bring up the test panel
where you can view and control the various I/O on the U6.

If LJControlPanel does not find the U6, check Windows Device Manager to see if the U6
installed correctly. One way to get to the Device Manager is:

Start => Control Panel => System => Hardware => Device Manager

The entry for the U6 should appear as in the following figure. If it has a yellow caution symbol
or exclamation point symbol, right-click and select “Uninstall” or “Remove”. Then disconnect
and reconnect the U6 and repeat the Found New Hardware Wizard as described above.

 7

1.1 Control Panel Application (LJControlPanel)
The LabJack Control Panel application (LJCP) handles configuration and testing of the U6.
Click on the “Find Devices” button to search for connected devices.

Figure 1-1. LJControlPanel Device Window

Figure 1-1 shows the results from a typical search. The application found a U6 connected by
USB. The USB connection has been selected in Figure 1-1, bringing up the main device
window on the right side.

• Refresh: Reload the window using values read from the device.
• Write Values: Write the Local ID from the window to the device.
• Config. IO Defaults: Opens the window shown in Figure 1-2.
• Reset: Click to reset the selected device.
• Test: Opens the window shown in Figure 1-3.

 8

Figure 1-2. LJControlPanel U6 Configure Defaults Window

Figure 1-2 shows the configuration window for U6 defaults. These are the values that will be
loaded by the U6 at power-up or reset. The factory defaults are shown above.

Figure 1-3 shows the U6 test window. This window continuously (once per second) writes to
and reads from the selected LabJack.

Figure 1-3. LJControlPanel U6 Test Window

 9

Selecting Options=>Settings from the main LJControlPanel menu brings up the window shown
in Figure 1-4. This window allows some features to of the LJControlPanel application to be
customized.

Figure 1-4. LJControlPanel Settings Window

• Search for USB devices: If selected, LJControlPanel will include USB when searching

for devices.
• Search for Ethernet devices using UDP broadcast packet: Does not apply to the U6.
• Search for Ethernet devices using specified IP addresses: Does not apply to the U6.

1.2 Self-Upgrade Application (LJSelfUpgrade)
The processor in the U6 has field upgradeable flash memory. The self-upgrade application
shown in Figure 1-5 programs the latest firmware onto the processor.

USB is the only interface on the U6, and first found is the only option for self-upgrading the U6,
so no changes are needed in the “Connect by:” box. There must only be one U6 connected to
the PC when running LJSelfUpgrade.

Click on “Get Version Numbers”, to find out the current firmware versions on the device. Then
use the provided Internet link to go to labjack.com and check for more recent firmware.
Download firmware files to the …\LabJack\LJSelfUpgrade\upgradefiles\ directory.

Click the Browse button and select the upgrade file to program. Click the Program button to
begin the self-upgrade process.

 10

Figure 1-5. Self-Upgrade Application

If problems are encountered during programming, try the following:

1. Unplug the U6, wait 5 seconds then reconnect the U6. Click OK then press
program again.

2. If step 1 does not fix the problem unplug the U6 and watch the LED while

plugging the U6 back in. Follow the following steps based on the LED's activity.

a. If the LED is blinking continuously, connect a jumper between FIO0
and SPC, then unplug the U6, wait 5 seconds and plug the U6 back in.
Try programming again (disconnect the jumper before programming).

b. If the LED blinks several times and stays on, connect a jumper
between FIO1 and SPC, then unplug the U6, wait 5 seconds and plug the
U6 back in. Try programming again (disconnect the jumper before
programming).

c. If the LED blinks several times and stays off, the U6 is not
enumerating. Please restart your computer and try to program again.

d. If there is no LED activity, connect a jumper between FIO1 and SPC,
then unplug the U6, wait 5 seconds and plug the U6 back in. If the LED is
blinking continuously click OK and program again (after removing the
jumper). If the LED does not blink connect a jumper between FIO0 and
SPC, then unplug the U6, wait 5 seconds and plug the U6 back in.

3. If there is no activity from the U6's LED after following the above steps, please

contact support.

 11

2. Hardware Description
The U6 has 3 different I/O areas:

• Communication Edge,
• Screw Terminal Edge,
• DB Edge.

The communication edge has a USB type B connector (with black cable connected in Figure 2-
1). All power and communication is handled by the USB interface.

The screw terminal edge has convenient connections for 4 analog inputs, both analog outputs, 4
flexible digital I/O (FIO), and both current sources. The screw terminals are arranged in blocks
of 4, with each block consisting of Vs, GND, and two I/O. Also on this edge are two LEDs. One
simply indicates power, while the other serves as a status indicator.

The DB Edge has 2 D-sub type connectors: a DB37 and DB15. The DB37 has some digital I/O
and all the analog I/O. The DB15 has 12 additional digital I/O (3 are duplicates of DB37 I/O).

Figure 2-1. LabJack U6

2.1 USB
For information about USB installation, see Section 1.

The U6 has a full-speed USB connection compatible with USB version 1.1 or 2.0. This
connection provides communication and power (Vusb). USB ground is connected to the U6
ground (GND), and USB ground is generally the same as the ground of the PC chassis and AC
mains.

The details of the U6 USB interface are handled by the high level drivers (Windows LabJackUD
DLL), so the following information is really only needed when developing low-level drivers.

The LabJack vendor ID is 0x0CD5. The product ID for the U6 is 0x0006.

 12

The USB interface consists of the normal bidirectional control endpoint (0 OUT & IN), 3 used
bulk endpoints (1 OUT, 2 IN, 3 IN), and 1 dummy endpoint (3 OUT). Endpoint 1 consists of a
64 byte OUT endpoint (address = 0x01). Endpoint 2 consists of a 64 byte IN endpoint (address
= 0x82). Endpoint 3 consists of a dummy OUT endpoint (address = 0x03) and a 64 byte IN
endpoint (address = 0x83). Endpoint 3 OUT is not supported by the firmware, and should never
be used.

All commands should always be sent on Endpoint 1, and the responses to commands will
always be on Endpoint 2. Endpoint 3 is only used to send stream data from the U6 to the host.

2.2 Power and Status LED
There is a yellow “Power” LED to indicate power, and a green “Status” LED controlled by the
main processor.

The Power LED is connected to VS (with a series resistor). It indicates that some voltage is
present on VS, but does not indicate whether the voltage is valid or not.

The Status LED flashes on reset and USB enumeration, then remains solid on with flashes to
indicate communication (USB) traffic.

Normal Power-Up Status LED Behavior: When the USB cable is connected to the U6, the
Status LED should blink a few times and then remain solid on.

2.3 GND and SGND
The GND connections available at the screw-terminals and DB connectors provide a common
ground for all LabJack functions. This ground is the same as the ground line on the USB
connection, which is often the same as ground on the PC chassis and therefore AC mains
ground.

SGND is located near the upper-left of the device. This terminal has a self-resetting thermal
fuse in series with GND. This is often a good terminal to use when connecting the ground from
another separately powered system that could unknowingly already share a common ground
with the U6.

See the AIN, DAC, and Digital I/O Sections for more information about grounding.

2.4 Vs
The Vs terminals are designed as outputs for the internal supply voltage (nominally 5 volts).
This will be the voltage provided from the USB cable. The Vs connections are outputs, not
inputs. Do not connect a power source to Vs in normal situations. All Vs terminals are the
same.

For information about powering the U6 from a source other than USB, see the OEM information
in Section 2.13.

 13

2.5 10UA and 200UA
The U6 has 2 fixed current source terminals useful for measuring resistance (thermistors, RTDs,
resistors). The 10UA terminal provides about 10 μA and the 200UA terminal provides about
200 μA.

The actual value of each current source is noted during factory calibration and stored with the
calibration constants on the device. These can be viewed using the test panel in
LJControlPanel, or read programmatically.

The current sources can drive about 3 volts max, thus limiting the maximum load resistance to
about 300 kΩ (10UA) and 15 kΩ (200UA).

Multiple resistances can be measured by putting them in series with a single current source and
using differential analog inputs to measure the voltage across each resistance.

The following charts show the typical tempco of the current sources over temperature. The
10UA current source has a very low tempco across temperature. The 200 UA current source
has a good tempco from about 0-50 degrees C, and outside of that range the effect of tempco
will be more noticeable.

10UA Typical Temperature Coefficient

-8

-6

-4

-2

0

2

4

6

-60 -40 -20 0 20 40 60 80

Temperature [deg C]

PP
M

/d
eg

C

Figure 2-2. Typical Temperature Coefficient of the 10UA Source

 14

igure 2-3. Typical Temperature Coefficient of the 200UA Source

2.6 AIN
k U6 has 14 user accessible analog inputs built-in. All the analog inputs are

he analog inputs have variable resolution, where the time required per sample increases with

on.

he analog inputs are connected to a high impedance instrumentation amplifier. The inputs are

on

hen scanning multiple channels, the nominal channel-to-channel delay is specified in
e signal

2.6.1 Channel Numbers
ilt-in analog inputs. Two of these are connected internally

is

200UA Typical Temperature Coefficient

-160

-140

-120

-100

-80

-60

-40

-20

0

-60 -40 -20 0 20 40 60 80

Temperature [deg C]

PP
M

/d
eg

C

F

The LabJac
available on the DB37 connector, and the first 4 are also available on the built-in screw
terminals.

T
increasing resolution. The value passed for resolution is from 0-8, where 0 corresponds to
default resolution, 1 is roughly 16-bit resolution (RMS or effective), and 8 is roughly 19-bit
resolution. The U6-Pro has additional resolution settings 9-12 that use the alternate high-
resolution converter (24-bit sigma-delta) and correspond to roughly 19-bit to 22-bit resoluti

T
not pulled to 0.0 volts, as that would reduce the input impedance, so readings obtained from
floating channels will generally not be 0.0 volts. The readings from floating channels depend
adjacent channels and sample rate. See Section 2.6.3.8.

W
Appendix A, and includes enough settling time to meet the specified performance. Som
sources could benefit from increased settling, so a settling time parameter is available that adds
extra delay between configuring the multiplexers and acquiring a sample. This extra delay will
impact the maximum possible data rates.

The LabJack U6 has 16 total bu
(AIN14/AIN15), leaving 14 user accessible analog inputs (AIN0-AIN13). The first 4 analog
inputs, AIN0-AIN3, appear both on the screw terminals and on the DB37 connector. There
about 4.4 kΩ of resistance between the duplicated connections, so connecting signals to both
will not short-circuit the signals but they will contend with each other.

 15

Positive Channel #
0-13 Single-Ended

0,2,4,6,8,10,12 Differential
14 Temp Sensor (deg K)
15 GND

Table 2-1. Positive Channel Numbers

Negative Channel #

1,3,5,7,9,11,13 Differential
0,15,199 Single-Ended (GND)

Table 2-2. Negative Channel Numbers

The DB37 connector has 3 MIO lines (shared with CIO0-CIO2) designed to address expansion
multiplexer ICs (integrated circuits), allowing for up to 112 total external analog inputs. The
DG408 from Intersil is a recommended multiplexer, and a convenient ±12 volt power supply is
available so the multiplexers can pass bipolar signals (see Vm+/Vm- discussion in Section
2.11). Figure 2-4 shows the typical connections for a pair of multiplexers.

Figure 2-4. Typical External Multiplexer Connections (Wrong Mux Shown!)

To make use of external multiplexers, the user must be comfortable reading a simple schematic
(such as Figure 2-4) and making basic connections on a solderless breadboard (such as the

 16

EB37). Initially, it is recommended to test the basic operation of the multiplexers without the
MIO lines connected. Simply connect different voltages to NO0 and NO1, connect
ADDA/ADDB/ADDC to GND, and the NO0 voltage should appear on COM. Then connect
ADDA to VS and the NO1 voltage should appear on COM.

If any of the AIN channel numbers passed to a U6 function a
c
that channel. For instance, a channel number of 28 will cause the MIO to be set to b100 and
the ADC will sample AIN1. Channel number besides 16-127 will have no affect on the MIO.
The extended channel number mapping is shown in Table 2-2.

For differential inputs, the positive channel must map to an even

re in the range 16-127 (extended
hannels), the MIO lines will automatically be set to output and the correct state while sampling

 channel from 0-12, and the
egative channel must be 8 higher.

ampling an extended channel the MIO lines remain in that
ame condition until commanded differently by another extended channel or another function.

ng

.6.2 Converting Binary Readings to Voltages
g inputs.

Table 2-4. Nominal Analog Input Voltage Ranges

n

In command/response mode, after s
s
When streaming with any extended channels, the MIO lines are all set to output-low for any non
extended analog channels. For special channels (digital/timers/counters), the MIO are driven to
unspecified states. Note that the StopStream can occur during any sample within a scan, so the
MIO lines will wind up configured for any of the extended channels in the scan. If a stream does
not have any extended channels, the MIO lines are not affected.

Table 2-3. Expanded Channel Mappi

2
Following are the nominal input voltage ranges for the analo

Gain Max V Min V
Bipolar 1 10.1 -10.6
Bipolar 10 1.01 -1.06
Bipolar 100 0.101 -0.106
Bipolar 1000 0.0101 -0.0106

Channel
U6 MIO Multiplexed

Channels
0 16-23
1 24-31
2 32-39
3 40-47
4 48-55
5 56-63

12 112-119
13 120-127

6 64-71
7 72-79
8 80-87
9 88-95
10 96-103
11 104-111

 17

The readings returned by the analog inputs are raw binary values (low-level functions). An
approximate voltage conversion can be performed as:

Volts(uncalibrated) = (Bits/65536)*Span

inimum voltage from the table above. For a
ation values (Slope and Offset) stored in the

ternal flash on the Control processor.

16-bits, so if the raw binary value is 24-bit data it must
e divided by 256 before converting to voltage. Binary readings are always unsigned integers.

o to labjack.com for details about the location of the U6 calibration constants.

oltage (versus ground):

Where span is the maximum voltage minus the m
proper voltage conversion, though, use the calibr
in

Volts = (Slope * Bits) + Offset

In both cases, “Bits” is always aligned to
b

Since the U6 uses multiplexers, all channels have the same calibration for a given input range.

G

2.6.3 Typical Analog Input Connections
 common question is “can this sensor/signal be measured with the U6”. Unless the signal has A

a voltage (referred to U6 ground) beyond the limits in Appendix A, it can be connected without
amaging the U6, but more thought is required to determine what is necessary to make useful d

measurements with the U6 or any measurement device.

V The single-ended analog inputs on the U6 measure a voltage with

re the voltage difference between two
ect to ground must still be within the

respect to U6 ground. The differential inputs measu
channels, but the voltage on each channel with resp
common mode limits specified in Appendix A. When measuring parameters other than voltage,
or voltages too big or too small for the U6, some sort of sensor or transducer is required to
produce the proper voltage signal. Examples are a temperature sensor, amplifier, resistive
voltage divider, or perhaps a combination of such things.

Impedance: When connecting the U6, or any measuring device, to a signal source, it must be
considered what impact the measuring device will have on the signal. The main considerat
is whether the currents going into or out of the U6 analog input will cause noticeable volta
errors due to the impedance of the source. See Appendix A for the recommended maximum
source impedance.

Resolution (and Accuracy):

ion

ge

 Based on the selected input range and resolution of the U6, the
solution can be determined in terms of voltage or engineering units. For example, assume

3
C.

ifferent than resolution) will also need to be considered. Appendix A places
o

re
some temperature sensor provides a 0-10 mV signal, corresponding to 0-100 degrees C.
Samples are then acquired with the U6 using the ±10 volt input range and 16-bit resolution,
resulting in a voltage resolution of about 20/65536 = 305 μV. That means there will be about 3
discrete steps across the 10 mV span of the signal, and the overall resolution is 0.03 degrees
Accuracy (which is d
some boundaries on expected accuracy, but an in-system calibration can generally be done t
provide absolute accuracy down to the INL limits of the U6.

Speed: How fast does the signal need to be sampled? For instance, if the signal is a
waveform, what information is needed: peak, average, RMS, shape, frequency, … ? Answe
to these questions will help decide how many points are needed per waveform cycle, and thus

rs

 18

what sampling rate is required. In the case of multiple channels, the scan rate is also
considered. See Sections 3.1 and 3.2.

2.6.3.1 Signal from the LabJack
One example of measuring a signal from the U6 itself, is with an analog output. All I/O on the
U6 share a common ground, so the voltage on an analog output (DAC) can be measured by
simply connecting a single wire from that terminal to an AIN terminal. The analog outp
be set to a voltage within the range of th

ut must
e analog input.

l

n exception might be a thermocouple housed in a metal probe where the negative lead of the
e housing. If this probe is put in contact with

.6.3.3 Signal powered by the LabJack

e that

nother variation is a 4-wire sensor where there are two signal wires (positive and negative)
ther than one. If the negative signal is the same as power ground, or can be shorted ground,

INx and a measurement can be made. A typical

nal, and the negative signal cannot be shorted to ground.
n instrumentation amplifier is required to convert the differential signal to signal-ended, and

 a

 the box is known to be electrically isolated from the LabJack, the box ground can simply be
le would be if the box was plastic, powered by an

t
rhaps are isolated at some time but the isolation is easily lost at another time.

d

2.6.3.2 Unpowered isolated signa
An example of an unpowered isolated signal would be a thermocouple or photocell where the
sensor leads are not shorted to any external voltages. Such a sensor typically has two leads.
The positive lead connects to an AINx terminal and the negative lead connects to a GND
terminal.

A
thermocouple is shorted to the metal prob
something (engine block, pipe, …) that is connected to ground or some other external voltage,
care needs to be taken to insure valid measurements and prevent damage.

2
A typical example of this type of signal is a 3-wire temperature sensor. The sensor has a power
and ground wire that connect to Vs and GND on the LabJack, and then has a signal wir
simply connects to an AINx terminal.

A
ra
then the positive signal can be connected to A
example where this does not work is a bridge type sensor, such as pressure sensor, providing
the raw bridge output (and no amplifier). In this case the signal voltage is the difference
between the positive and negative sig
A
probably also to amplify the signal.

2.6.3.4 Signal powered externally
An example is a box with a wire coming out that is defined as a 0-5 volt analog signal and
second wire labeled as ground. The signal is known to have 0-5 volts compared to the ground
wire, but the complication is what is the voltage of the box ground compared to the LabJack
ground.

If
connected to LabJack GND. An examp
internal battery, and does not have any wires besides the signal and ground which are
connected to AINx and GND on the LabJack. Such a case is obviously isolated and easy to
keep isolated. In practical applications, though, signals thought to be isolated are often not a
all, or pe

If the box ground is known to be the same as the LabJack GND, then perhaps only the one
signal wire needs to be connected to the LabJack, but it generally does not hurt to go ahea

 19

and connect the ground wire to LabJack GND with a 100 Ω resistor. You definitely do n
to connect the grounds without a resistor.

If little is known about the box ground, a DMM can be used to measure the voltage of b

ot want

ox
round compared to LabJack GND. As long as an extreme voltage is not measured, it is

 Ω

e return of the analog input bias current, which is on
e order of nanoamps for the U6.

 connections to the U6. If no large voltages are noted,
onnect the ground to U6 SGND with a 100 Ω series resistor. Then again use the DMM to

d connections. For instance,
 connecting 8 sensors powered by the same external supply, or otherwise referred to the same

ted

or a do-it-yourself solution, the following figure shows an operational amplifier (op-amp)

g
generally OK to connect the box ground to LabJack GND, but it is a good idea to put in a 100
series resistor to prevent large currents from flowing on the ground. Use a small wattage
resistor (typically 1/8 or 1/4 watt) so that it blows if too much current does flow. The only
current that should flow on the ground is th
th

The SGND terminal can be used instead of GND for externally powered signals. A series
resistor is not needed as SGND is fused to prevent overcurrent, but a resistor will eliminate
confusion that can be caused if the fuse is tripping and resetting.

In general, if there is uncertainty, a good approach is to use a DMM to measure the voltage on
each signal/ground wire without any
c
measure the voltage of each signal wire before connecting to the U6.

Another good general rule is to use the minimum number of groun
if
external ground, only a single ground connection is needed to the U6. Perhaps the ground
leads from the 8 sensors would be twisted together, and then a single wire would be connec
to a 100 Ω resistor which is connected to U6 ground.

2.6.3.5 Amplifying small signal voltages
This section has general information about external signal amplification. The U6 has an
outstanding amplifier built-in. Combined with the high resolution capability of the U6, an
external amplifier is seldom needed, and in many cases will actually degrade noise and
accuracy performance.

F
configured as non-inverting:

Figure 2-5. Non-Inverting Op-Amp Configuration

The gain of this configuration is:

 20

Vout = Vin * (1 + (R2/R1))

100 kΩ is a typical value for R2. Note that if R2=0 (short-circuit) and R1=inf (not installed), a
simple buffer with a gain equal to 1 is the result.

There are numerous criteria used to choose an op-amp from the thousands that are available.
One of the main criteria is that the op-amp can handle the input and output signal range. Often,
a single-supply rail-to-rail input and output (RIRO) is used as it can be powered from Vs and
GND and pass signals within the range 0-Vs. The OPA344 from Texas Instruments (ti.com) is
good for many 5 volt applications. The max supply rating for the OPA344 is 5.5 volts, so for
applications using Vm+/Vm- (±12 volts), the LT1490A from Linear Technologies (linear.com)
might be a good option.

ferred to the same ground as the
abJack (single-ended). If instead the signal is differential (i.e. there is a positive and negative

than ground), an instrumentation amplifier (in-amp) should be
sed. An in-amp converts a differential signal to single-ended, and generally has a simple

nd resistance measurement)

The op-amp is used to amplify (and buffer) a signal that is re
L
signal both of which are different
u
method to set gain.

2.6.3.6 Signal voltages beyond ±10 volts (a
The nominal maximum analog input voltage range for the U6 is ±10 volts. The basic way to
handle higher voltages is with a resistive voltage divider. The following figure shows the
resistive voltage divider assuming that the source voltage (Vin) is referred to the same ground
as the U6 (GND).

igure 2-6. Voltage DF ivider Circuit

ly implemented by putting a resistor (R1) in series with the signal wire, and
lacing a second resistor (R2) from the AIN terminal to a GND terminal. To maintain specified

analog input performance, R1 should not exceed 10 kΩ, so R1 can generally be fixed at 10 kΩ
and R2 can be adjusted for the desired attenuation. For instance, R1 = R2 = 10 kΩ provides a
divide by 2, so a ±20 volt input will be scaled to ±10 volts and a 0-20 volt input will be scaled to
0-10 volts.

The divide by 2 configuration where R1 = R2 = 10 kΩ, presents a 20 kΩ load to the source,
meaning that a ±10 volt signal will have to be able to source/sink up to ±500 µA. Some signal
sources might require a load with higher resistance, in which case a buffer should be used. The

The attenuation of this circuit is determined by the equation:

Vout = Vin * (R2 / (R1+R2))

This divider is easi
p

 21

following figure shows a resistive voltage divider followed by an op-amp configured as non-
verting unity-gain (i.e. a buffer). in

Figure 2-7. Buffered Voltage Divider Circuit

+/Vm- supply on the U6, and can pass signals in the ±10
olt range. Since the input bias current is only -1 nA, large divider resistors such as R1 = R2 =

470 kΩ will only cause an offset of about -470 µV, and yet present a load to the source of about
1 megaohm.

For 0-5 volt applications, where the amp will be powered from Vs and GND, the LT1490A is not
the best choice. When the amplifier input voltage is within 800 mV of the positive supply, the
bias current jumps from -1 nA to +25 nA, which with R1 = 470 kΩ will cause the offset to change
from -470 µV to +12 mV. A better choice in this case would be the OPA344 from Texas
Instruments (ti.com). The OPA344 has a very small bias current that changes little across the
entire voltage range. Note that when powering the amp from Vs and GND, the input and output

s is 4.8 volts your signal range will be 0-4.8 volts.

 great way to measure resistance is using the current sources on the U6. By sending this

urrent shunt shown in the figure is simply a resistor.

The op-amp is chosen to have low input bias currents so that large resistors can be used in the
voltage divider. The LT1490A from Linear Technologies (linear.com) is a good choice for dual-
supply applications. The LT1490A only draws 40 µA of supply current, thus many of these
amps can be powered from the Vm
v

to the op-amp is limited to that range, so if V

Another option is the LJTick-Divider which plugs into the U6 screw-terminals. It is similar to the
buffered divider shown in Figure 2-7. More information is available at labjack.com.

The information above also applies to resistance measurement. A common way to measure
resistance is to build a voltage divider as shown in Figure 2-6, where one of the resistors is
known and the other is the unknown. If Vin is known and Vout is measured, the voltage divider
equation can be rearranged to solve for the unknown resistance.

A
known current through the resistance and measuring the voltage that results across, the value
of the resistance can be calculated. Common resistive sensors are thermistors and RTDs.

2.6.3.7 Measuring current (including 4-20 mA) with a resistive shunt
The following figure shows a typical method to measure the current through a load, or to
measure the 4-20 mA signal produced by a 2-wire (loop-powered) current loop sensor. The
c

 22

Figure 2-8. Current Measurement With Arbitrary Load or 2-Wire 4-20 mA Sensor

When measuring a 4-20 mA signal, a typical value for the shunt would be 240 Ω. This results in
a 0.96 to 4.80 volt signal corresponding to 4-20 mA. The external supply must provide enough
voltage for the sensor and the shunt, so if the sensor requires 5 volts the supply must provide at
least 9.8 volts.

For applications besides 4-20 mA, the shunt is chosen based on the maximum current and how
much voltage drop can be tolerated across the shunt. For instance, if the maximum current is
1.0 amp, and 2.5 volts of drop is the most that can be tolerated without affecting the load, a 2.4
Ω resistor could be used. That equates to 2.4 watts, though, which would require a special high
wattage resistor. A better solution would be to use a lower resistance shunt, and rely on the

 current to
istor and a hall-

ffect sensor should be considered instead of a shunt.

outstanding performance of the U6 to resolve the smaller signal. If the maximum
measure is too high (e.g. 100 amps), it will be difficult to find a small enough res
e

The following figure shows typical connections for a 3-wire 4-20 mA sensor. A typical value for
the shunt would be 240 Ω which results in 0.96 to 4.80 volts.

Figure 2-9. Current Measurement With 3-Wire 4-20 mA (Sourcing) Sensor

The sensor shown in Figure 2-9 is a sourcing type, where the signal sources the 4-20 mA
current which is then sent through the shunt resistor and sunk into ground. Another type of 3-
wire sensor is the sinking type, where the 4-20 mA current is sourced from the positive supply,
sent through the shunt resistor, and then sunk into the signal wire. If sensor ground is
connected to U6 ground, the sinking type of sensor presents a couple of problems, as the
voltage across the shunt resistor is differential (neither side is at ground) and at least one side of
the resistor has a high common mode voltage (equal to the positive sensor supply). If the
sensor and/or U6 are isolated, a possible solution is to connect the sensor signal or positive
sensor supply to U6 ground (instead of sensor ground). This requires a good understanding of
grounding and isolation in the system. The LJTick-CurrentShunt is often a simple solution.

 23

Both Figure 2-8 and 2-9 show a 0-100 Ω resistor in series with SGND, which is discussed in
ction

redict and is likely to vary with sample timing and adjacent sampled channels. Keep in mind

me evices use a resistor, from the input to ground, to bias an unconnected

 a situation where it is desired that a floating channel read a particular voltage, say to detect a
he AINx screw terminal to the desired voltage (GND,

jacent VS terminal.

 the enclosure
stalled, so when the internal temperature sensor is used for thermocouple cold junction

compensation on AIN0-AIN3, it is recommended to add 2.5 degrees C to the readings.

 14

 converters or analog outputs) on the U6. Each DAC can
e set to a voltage between about 0.02 and 5 volts with 12-bits of resolution.

put is
ited to slightly less than Vs.

general in Section 2.6.3.4. In this case, if SGND is used (rather than GND), a direct conne
(0 Ω) should be good.

The best way to handle 4-20 mA signals is with the LJTick-CurrentShunt, which is a two channel
active current to voltage converter module that plugs into the U6 screw-terminals. More
information is available at labjack.com.

2.6.3.8 Floating/Unconnected Inputs
The reading from a floating (no external connection) analog input channel can be tough to
p
that a floating channel is not at 0 volts, but rather is at an undefined voltage. In order to see 0
volts, a 0 volt signal (such as GND) should be connected to the input.

o data acquisition dS
input to read 0. This is often just for "cosmetic" reasons so that the input reads close to 0 with
floating inputs, and a reason not to do that is that this resistor can degrade the input impedance
of the analog input.

In
broken wire, a resistor can be placed from t
VS, DACx, ...), but obviously that degrades the input impedance. For the specific case of
pulling a floating channel to 0 volts at gain=1 and resolution=1, a 100 kΩ resistor to GND can
typically be used to provide analog input readings within 100 mV of ground.

2.6.4 Internal Temperature Sensor
The U6 has an internal temperature sensor. The sensor is physically located near the AIN3
screw-terminal. It is labeled U17 on the PCB, and can be seen through the gap between the
AIN3 terminal and ad

The U6 enclosure typically makes a 1 degree C difference in the temperature at the internal
sensor. Calibrated readings are typically 0.5 degrees high with the enclosure installed, and 0.5
degrees low with the PCB in free air.

The screw terminals AIN0-AIN3 are typically 3 degrees C above ambient with
in

With the UD driver, the internal temperature sensor is read by acquiring analog input channel
and returns degrees K.

2.7 DAC
There are two DACs (digital-to-analog
b

Although the DAC values are based on an absolute reference voltage, and not the supply
voltage, the DAC output buffers are powered internally by Vs and thus the maximum out
lim

 24

The analog output commands are sent as raw binary values (low level functions). For a desired

utput voltage, the binary value can be approximated as:

Bits(uncalibrated) = (Volts/4.86)*65536

ote that even if the power-up default
e or disabled, there is a delay of about 100 ms at
tory default condition.

d to the analog outputs, as they are voltage sources themselves.

ge) of a few volts.

alog Output Connections

 that
utput,

 in Figure 2-5. A simple RC filter can be added

.7.1.2 Different Output Ranges
The typical output range of the DACs is about 0.02 to 5 volts. For other unipolar ranges, an op-

n be used to provide the desired gain. For
xample, to increase the maximum output from 4.86 volts to 10.0 volts, a gain of 2.06 is

hosen as 100 kΩ, then an R1 of 93.1 kΩ is the closest 1%

gain and offset, but of course the op-amp must be powered with supplies greater than the
desired output range (depending on the ability of the op-amp to drive it’s outputs close to the

o

For a proper calculation, though, use the calibration values (Slope and Offset) stored in the
internal flash on the Control processor:

Bits = (Slope * Volts) + Offset

The DACs appear both on the screw terminals and on the DB37 connector. These connections

re electrically the same. a

The power-up condition of the DACs can be configured by the user. From the factory, the

ACS default to enabled at minimum voltage (~0 volts). ND
for a line is changed to a different voltag

ower-up where the DACs are in the facp

The analog outputs can withstand a continuous short-circuit to ground, even when set at

aximum output. m

oltage should never be applieV
In the event that a voltage is accidentally applied to either analog output, they do have
protection against transient events such as ESD (electrostatic discharge) and continuous

vervoltage (or undervoltao

There is an accessory available from LabJack called the LJTick-DAC that provides a pair of 14-
bit analog outputs with a range of ±10 volts. The LJTick-DAC plugs into any digital I/O block,
and thus up to 10 of these can be used per U6 to add 20 analog outputs.

2.7.1 Typical An

2.7.1.1 High Current Output
The DACs on the U6 can output quite a bit of current, but have 50 Ω of source impedance
will cause voltage drop. To avoid this voltage drop, an op-amp can be used to buffer the o
such as the non-inverting configuration shown
between the DAC output and the amp input for further noise reduction. Note that the ability of
the amp to source/sink current near the power rails must still be considered. A possible op-amp
choice would be the TLV246x family (ti.com).

2

amp in the non-inverting configuration (Figure 2-5) ca
e
required. If R2 (in Figure 2-5) is c
resistor that provides a gain greater than 2.06. The +V supply for the op-amp would have to be
greater than 10 volts.

For bipolar output ranges, such as ±10 volts, a similar op-amp circuit can be used to provide

 25

power rails). For example, the EB37 experiment board provides power supplies that are
typically ±9.5 volts. If these supplies are used to power the LT1490A op-amp (linear.com),

uld be driven very close to ±9.5 volts. If ±12 or

d

eference (such as 2.5 volts) could also be used instead of DAC1.

which has rail-to-rail capabilities, the outputs co
±15 volt supplies are available, then the op-amp might not need rail-to-rail capabilities to
achieve the desired output range.

A reference voltage is also required to provide the offset. In the following circuit, DAC1 is use
to provide a reference voltage. The actual value of DAC1 can be adjusted such that the circuit
output is 0 volts at the DAC0 mid-scale voltage, and the value of R1 can be adjusted to get the

esired gain. A fixed rd

Figure 2-10. ±10 Volt DAC Output Circuit

A two-point calibration should be done to determine the exact input/output relationship of this
circuit. Refer to application note SLOA097 from ti.com for further information about gain and
offset design with op-amps.

2.8 Digital I/O
The LabJack U6 has 20 digital I/O. The LabJackUD driver uses the following bit numbers to
specify all the digital lines:

0-7 FIO0-FIO7
8-15 EIO0-EIO7

ome signals appear in multiple locations. Outputs might use both locations at the same time,
but inputs should only have a connection to one location at a time. FIO0-FIO3 appear on both

and screw terminals with 940 Ω between the duplicate connections.

ections.

The first 4 lines, FIO0-FIO3, appear both on the screw terminals and on the
e upper 4 lines appear only on the DB37 connector. By default, the FIO

16-19 CIO0-CIO3
20-22 MIO0-MIO2

Note that on the U6 CIO0-CIO2 are shared with MIO0-MIO2. That is, CIO0 is shorted to
MIO0, CIO1 is shorted to MIO1, and CIO2 is shorted to MIO2.

S

the DB37 connector
MIO/CIO0-MIO/CIO2 appear on both the DB15 connector and DB37 connector with 0 Ω
between the duplicate conn

The U6 has 8 FIO.
DB37 connector. Th

 26

lines are digital I/O, but they can also be configured as up to 4 timers and 2 counters (see
tion of this User’s Guide).

ability of these lines to sink or source current.

ible states: input, output-high, or output-low. Each bit of I/O

-

ne
 all

) that writes/reads the power-up

-FIO7 are input,
if FIODir is 5 (2 + 2), FIO0 and FIO2 are output, all other FIO lines are input,

.8.1 Typical Digital I/O Connections

logic low. This signal is generally connected directly to the U6 digital input, considering the

Timers/Counters Sec

The 8 EIO and 4 CIO lines appear only on the DB15 connector. See the DB15 Section of this
User’s Guide for more information.

Up to 6 of the FIO/EIO lines can be configured as timers and counters. These are enabled
sequential starting from FIO0-EIO0 (determined by pin offset). Thus, any sequential block of 1-
6 digital I/O, starting from FIO0 to EIO0, can be configured as up to 4 timers and up to 2
counters.

IO are standard digital I/O that also have a special multiplexer control function described in M
Section 2.6 above (AIN). The MIO are addressed as digital I/O bits 20-22 by the Windows
driver. The MIO hardware (electrical specifications) is the same as the EIO/CIO hardware.

All the digital I/O include an internal series resistor that provides overvoltage/short-circuit

rotection. These series resistors also limit the p
Refer to the specifications in Appendix A.

ll digital I/O on the U6 have 3 possA
can be configured individually. When configured as an input, a bit has a ~100 kΩ pull-up
resistor to 3.3 volts (all digital I/O are 5 volt tolerant). When configured as output-high, a bit is
connected to the internal 3.3 volt supply (through a series resistor). When configured as output
low, a bit is connected to GND (through a series resistor).

The power-up condition of the digital I/O can be configured by the user. From the factory, all
digital I/O are configured to power-up as inputs. Note that even if the power-up default for a li
is changed to output-high or output-low, there is a delay of about 100 ms at power-up where

igital I/O are in the factory default condition. d

The low-level Feedback function (Section 5.2.5) writes and reads all digital I/O. See Section
3.1 for timing information. For information about using the digital I/O under the Windows

abJackUD driver, see Section 4.3.5. L

Many function parameters contain specific bits within a single integer parameter to write/read
specific information. In particular, most digital I/O parameters contain the information for each
bit of I/O in one integer, where each bit of I/O corresponds to the same bit in the parameter (e.g.
the direction of FIO0 is set in bit 0 of parameter FIODir). For instance, in the function

ontrolConfig, the parameter FIODir is a single byte (8 bitsC
direction of each of the 8 FIO lines:

• if FIODir is 0, all FIO lines are input,
• if FIODir is 1 (20), FIO0 is output, FIO1
• 0 2

• if FIODir is 255 (20 + … + 27), FIO0-FIO7 are output.

2

2.8.1.1 Input: Driven Signals
The most basic connection to a U6 digital input is a driven signal, often called push-pull. With a
push-pull signal the source is typically providing a high voltage for logic high and zero volts for

 27

voltage specifications in Appendix A. If the signal is over 5 volts, it can still be connected wi
series resistor. The digital inputs ha

th a
ve protective devices that clamp the voltage at GND and

S, so the series resistor is used to limit the current through these protective devices. For
ins c ugh a 22 kΩ series resistor, about 19 volts will be
dro e ich is no problem for the U6.
The e hen low is
pull

The other possible consideration with the basic push-pull signal is the ground connection. If the
nd with the U6, then no additional ground

cted to U6 GND. If there is uncertainty about the relationship

V
tan e, if a 24 volt signal is connected thro
pp d across the resistor, resulting in a current of 1.1 mA, wh
 s ries resistor should be 22 kΩ or less, to make sure the voltage on the I/O line w
ed below 0.8 volts.

signal is known to already have a common grou
onnection is used. If the signal is known to not have a common ground with the U6, then the c

signal ground can simply be conne
between signal ground and U6 ground (e.g. possible common ground through AC mains), then
a ground connection with a 100 Ω series resistor is generally recommended (see Section
2.6.3.4).

Figure 2-11. Driven Signal Connection To Digital Input

Figure 2-11 shows typical connections. Rground is typically 0-100 Ω. Rseries is typically 0 Ω
(short-circuit) for 3.3/5 volt logic, or 22 kΩ (max) for high-voltage logic. Note that an individual
ground connection is often not needed for every signal. Any signals powered by the same

xternal se
ground conn

upply, or otherwise referred to the same external ground, should share a single
ection to the U6 if possible.

When dealing with a new sensor, a push-pull signal is often incorrectly assumed when in fact
the sensor provides an open-collector signal as described next.

2.8.1.2 Input: Open-Collector Signals
Open-collector (also called open-drain or NPN) is a very common type of digital signal. Rather
than providing 5 volts and ground, like the push-pull signal, an open-collector signal provides
ground and high-impedance. This type of signal can be thought of as a switch connected to

rnal pull-up resistor, an open-collector
ignal can generally be connected directly to the input. When the signal is inactive, it is not

ground. Since the U6 digital inputs have a 100 kΩ inte
s
driving any voltage and the pull-up resistor pulls the digital input to logic high. When the signal
is active, it drives 0 volts which overpowers the pull-up and pulls the digital input to logic low.
Sometimes, an external pull-up (e.g. 4.7 kΩ from Vs to digital input) will be installed to increase
the strength and speed of the logic high condition.

 28

Figure 2-12. Open-Collector (NPN) Connection To Digital Input

Figure 2-12 shows typical connections. Rground is typically 0-100 Ω, Rseries is typically 0 Ω,
and the external pull-up resistor is generally not required. If there is some uncertainty about
whether the signal is really open-collector or could drive a voltage beyond 5.8 volts, use an
Rseries of 22 kΩ as discussed in Section 2.8.1.1, and the input should be compatible with an
open-collector signal or a driven signal up to at least 48 volts. Note that an individual ground
connection is often not needed for every signal. Any signals powered by the same external
supply, or otherwise referred to the same external ground, should share a single ground
connection to the U6 if possible.

.8.1.3 Input: Mechanical Switch Closure

2
To detect whether a mechanical switch is open or closed, connect one side of the switch to U6
ground and the other side to a digital input. The behavior is very similar to the open-collector
described above.

Figure 2-13. Basic Mechanical Switch Connection To Digital Input

hen the switch is open, the internal 100 kΩ pull-up resistor will pull the digital input to about
3.3 volts (logic high). When the switch is closed, the ground connection will overpower the pull-
up resistor and pull the digital input to 0 volts (logic low). Since the mechanical switch does not
have any electrical connections, besides to the LabJack, it can safely be connected directly to
GND, without using a series resistor or SGND.

When the mechanical switch is closed (and even perhaps when opened), it will bounce briefly
and produce multiple electrical edges rather than a single high/low transition. For many basic
digital input applications, this is not a problem as the software can simply poll the input a few

bounce. For
oblem. The hardware

W

times in succession to make sure the measured state is the steady state and not a
applications using timers or counters, however, this usually is a pr
counters, for instance, are very fast and will increment on all the bounces. Some solutions to
this issue are:

 29

• Software Debounce: If it is known that a real closure cannot occur more than once per

some interval, then software can be used to limit the number of counts to that rate.
• Firmware Debounce: See section 2.9.1 for information about timer mode 6.

• Active Hardware Debounce: Integrated circuits are available to debounce switch

signals. This is the most reliable hardware solution. See the MAX6816 (maxim-ic.com)
or EDE2008 (elabinc.com).

• Passive Hardware Debounce: A combination of resistors and capacitors can be used to
debounce a signal. This is not foolproof, but works fine in most applications.

Figure 2-14. Passive Hardware Debounce

Figure 2-14 shows one possible configuration for passive hardware debounce. First, consider
the case where the 1 kΩ resistor is replaced by a short circuit. When the switch closes it
immediately charges the capacitor and the digital input sees logic low, but when the switch
opens the capacitor slowly discharges through the 22 kΩ resistor with a time constant of 22 ms.
By the time the capacitor has discharged enough for the digital input to see logic high, the
mechanical bouncing is done. The main purpose of the 1 kΩ resistor is to limit the current surge
when the switch is close. 1 kΩ limits the maximum current to about 5 mA, but better results
might be obtained with smaller resistor values.

2.8.1.4 Output: Controlling Relays
All the digital I/O lines have series resistance that restricts the amount of current they can sink
or source, but solid-state relays (SSRs) can usually be controlled directly by the digital I/O. The
SSR is connected as shown in the following diagram, where VS (~5 volts) connects to the
positive control input and the digital I/O line connects to the negative control input (sinking
configuration).

Figure 2-15. Relay Connections (Sinking Control, High-Side Load Switching)

When the digital line is set to output-low, control current flows and the relay turns on. When the
digital line is set to input, control current does not flow and the relay turns off. When the digital

 30

line is set to output-high, some current flows, but whether the relay is on or off depends on the
specifications of a particular relay. It is recommended to only use output-low and input.

For example, the Series 1 (D12/D24) or Series T (TD12/TD24) relays from Crydom specify a
max turn-on of 3.0 volts, a min turn-off of 1.0 volts, and a nominal input impedance of 1500 Ω.

• When the digital line is set to output-low, it is the equivalent of a ground connection with
180 Ω (EIO/CIO/MIO) or 550 Ω (FIO) in series. When using an EIO/CIO/MIO line, the
resulting voltage across the control inputs of the relay will be about 5*1500/(1500+180) =

 of the
EIO/CIO/MIO line). With an FIO line the voltage across the inputs of the relay will be

When the digital line is set to input, it is the equivalent of a 3.3 volt connection with 100

internal 100 kΩ resistance. This is well below the 1.0 volt threshold for the relay, so it

•

 line, the
0)

le relays, so the resulting state is unknown.

Most m
directly
buffer i
ULN2003), or an op-amp.

o h
mec a

The RB
DB15 c r
Opto22

nother accessory available from LabJack is the LJTick-RelayDriver. This is a two channel
up to

mer0, Timer1,

imer2, Timer3, Counter0, then Counter1), starting with FIO0+TimerCounterPinOffset. Some

d, Counter1 disabled, and TimerCounterPinOffset=0:

4.5 volts (the other 0.5 volts is dropped across the internal resistance

about 5*1500/(1500+550) = 3.7 volts (the other 1.3 volts are dropped across the internal
resistance of the FIO line). Both of these are well above the 3.0 volt threshold for the
relay, so it will turn on.

•

kΩ in series. The resulting voltage across the control inputs of the relay will be close to
zero, as virtually all of the 1.7 volt difference (between VS and 3.3) is dropped across the

will turn off.

When the digital line is set to output-high, it is the equivalent of a 3.3 volt connection with
180 Ω (EIO/CIO/MIO) or 550 Ω (FIO) in series. When using an EIO/CIO/MIO
resulting voltage across the control inputs of the relay will be about 1.7*1500/(1500+18
= 1.5 volts. With an FIO line the voltage across the inputs of the relay will be about
1.7*1500/(1500+550) = 1.2 volts. Both of these in the 1.0-3.0 volt region that is not
defined for these examp

echanical relays require more control current than SSRs, and cannot be controlled
 by the digital I/O on the U6. To control higher currents with the digital I/O, some sort of
s used. Some options are a discrete transistor (e.g. 2N2222), a specific chip (e.g.

N te t at the U6 DACs can source enough current to control almost any SSR and even some

h nical relays, and thus can be a convenient way to control 1 or 2 relays.

12 relay board is a useful accessory available from LabJack. This board connects to the
onnector on the U6 and accepts up to 12 industry standard I/O modules (designed fo
 G4 modules and similar).

A
module that plugs into the U6 screw-terminals, and allows two digital lines to each hold off
50 volts and sink up to 200 mA. This allows control of virtually any solid-state or mechanical
relay.

.9 Timers/Counters 2
The U6 has 4 timers (Timer0-Timer3) and 2 counters (Counter0-Counter1). When any of these
timers or counters are enabled, they take over an FIO/EIO line in sequence (Ti
T
examples:

1 Timer enabled, Counter0 disable

 31

FIO0=Timer0

1 Timer enabled, Counter0 disabled, Counter1 enabled, and TimerCounterPinOffset=0:
FIO0=Timer0
FIO1=Counter1

nabled, Counter1 enabled, and TimerCounterPinOffset=8:2 Timers enabled, Counter0 e

mple,
 On the

2 (for example), is always on the screw terminal labeled FIO2, and AIN3 is

r0 is not available with certain timer clock base frequencies. In such a case, it
external FIO/EIO pin. An error will result if an attempt is made to enable

 I/O are automatically configured as input or output as needed when timers and
bled, and stay that way when the timers/counters are disabled.

tion
 reset.

Both timers use the same timer clock. There are 7 choices for the timer base clock:

EIO0=Timer0
EIO1=Timer1
EIO2=Counter0
EIO3=Counter1

Timers and counters can appear on various pins, but other I/O lines never move. For exa

pear anywhere from FIO1 to EIO1, depending on TimerCounterPinOffset. Timer1 can ap
ther hand, FIOo

always on the screw terminal labeled FIO3.

Note that Counte

oes not use an d
Counter0 when one of these frequencies is configured. Similarly, an error will result if an

e to configure one of these frequencies when Counter0 is enabled. attempt is mad

Applicable digital
counters are ena

See Section 2.8.1 for information about signal connections.

Each counter (Counter0 or Counter1) consists of a 32-bit register that accumulates the number
of falling edges detected on the external pin. If a counter is reset and read in the same func
call, the read returns the value just before the

The timers (Timer0-Timer3) have various modes available:

Timer Modes
0 16-bit PWM output
1 8-bit PWM output
2 Period input (32-bit, rising edges)
3 Period input (32-bit, falling edges)
4 Duty cycle input
5 Firmware counter input
6 Firmware counter input (with debounce)
7 Frequency output
8 Quadrature input
9 Timer stop input (odd timers only)
10 System timer low read (default mode)
11 System timer high read
12 Period input (16-bit, rising edges)
13 Period input (16-bit, falling edges)

 32

The first 3 clocks have a fixed frequency, and are not affected by TimerClockDivisor. The
frequency of the last 4 clocks can be further adjusted by TimerClockDivisor, but when using
these clocks Counter0 is not available. When Counter0 is not available, it does not use an
external FIO/EIO pin. The divisor has a range of 0-255, where 0 corresponds to a division of

56.

er Mode Descriptions

(16-Bit, Mode 0)
d should be 0-65535,

tal increments). That
36 are low) to 0.0015% (65535 out

tput is the clock frequency specified by
imerClockBase/TimerClockDivisor divided by 216. The following table shows the range of

s
where from 0 to 10 milliseconds

efore the start of the PWM output.

2.9.1.2 PWM Output (8-Bit, Mode 1)
Outputs a pulse width modulated rectangular wave output. Value passed should be 0-65535,
and determines what portion of the total time is spent low (out of 65536 total increments). The

2

2.9.1 Tim

2.9.1.1 PWM Output
Outputs a pulse width modulated rectangular wave output. Value passe
and determines what portion of the total time is spent low (out of 65536 to
means the duty cycle can be varied from 100% (0 out of 655
of 65536 are low).

The overall frequency of the PWM ou
T
available PWM frequencies based on timer clock settings.

TimerBaseClock

The same clock applies to all timers, so all 16-bit PWM channels will have the same frequency
and will have their falling edges at the same time.

PWM output starts by setting the digital line to output-low for the specified amount of time. The
output does not necessarily start instantly, but rather waits for the internal clock to roll. For
example, if the PWM frequency is 100 Hz, that means the period is 10 milliseconds, and thu
after the command is received by the device it could be any
b

Divisor=1 Divisor=256
0 4 MHz 61.04 N/A
1

PWM16 Frequency Ranges

12 MHz 183.11 N/A
2 48 MHz (Default) 732.42 N/A

0.060
0.238
0.715

TimerBaseClock
0 4 MHz
1 12 MHz
2 48 MHz (Default)
3 1 MHz /Divisor
4 4 MHz /Divisor
5 12 MHz /Divisor
6 48 MHz /Divisor

3 1 MHz /Divisor 15.26
4 4 MHz /Divisor 61.04
5 12 MHz /Divisor 183.11
6 48 MHz /Divisor 732.42 2.861

 33

lower byte is actually ignored since this is 8-bit PW
from 100% (0 out of 65536 are low) to 0.4% (65280 out of 65

The overall frequency of the PWM output is the clock frequen
TimerClockBase/TimerClockDivisor divided by 28. The follo
available PWM frequencies based on timer clock settings.

M. That means the duty cycle can be varied
536 are low).

cy specified by
wing table shows the range of

 so all 8-bit PWM channels will have the same frequency
nd will have their falling edges at the same time.

 10 milliseconds

 mode records the number of clock
ycles (clock frequency determined by TimerClockBase/TimerClockDivisor) between this rising

edge and the previous rising edge. The value is updated on every rising edge, so a read
returns the time between the most recent pair of rising edges.

In this 32-bit mode, the processor must jump to an interrupt service routine to record the time,
so small errors can occur if another interrupt is already in progress. The possible error sources
are:

• Other edge interrupt timer modes (2/3/4/5/8/9/12/13). If an interrupt is already being
handled due to an edge on the other timer, delays of a few microseconds are possible.

• If a stream is in progress, every sample is acquired in a high-priority interrupt. These
interrupts could cause delays on the order of 10 microseconds.

em timer interrupt

ition if stream mode is used to acquire timer data in this

TimerBaseClock Divisor=1 Divisor=256
0 4 MHz 15625.00 N/A

3 1 MHz /Divisor 3906.25 15.259

PWM8 Frequency Ranges

1 12 MHz 46875.00 N/A
2 48 MHz (Default) 187500.00 N/A

The same clock applies to all timers,

4 4 MHz /Divisor 15625.00 61.035
5 12 MHz /Divisor 46875.00 183.105
6 48 MHz /Divisor 187500.00 732.422

a

PWM output starts by setting the digital line to output-low for the specified amount of time. The
output does not necessarily start instantly, but rather waits for the internal clock to roll. For
example, if the PWM frequency is 100 Hz, that means the period is 10 milliseconds, and thus
after the command is received by the device it could be anywhere from 0 to

efore the start of the PWM output. b

2.9.1.3 Period Measurement (32-Bit, Modes 2 & 3)
Mode 2: On every rising edge seen by the external pin, this
c

• The always active U6 system timer causes an interrupt 61 times per second. If this
interrupt happens to be in progress when the edge occurs, a delay of about 1
microsecond is possible. If the software watchdog is enabled, the syst
takes longer to execute and a delay of a few microseconds is possible.

Note that the minimum measurable period is limited by the edge rate limit discussed in Section
2.9.2.

ee Section 3.2.1 for a special condS
mode.

Writing a value of zero to the timer performs a reset. After reset, a read of the timer value will
return zero until a new edge is detected. If a timer is reset and read in the same function call,
the read returns the value just before the reset.

 34

Mode 3 is the same except that falling edges are used instead of rising edges.

2.9.1.4 Duty Cycle Measurement (Mode 4)
Re d
pulse w
sig c
high sig re a 16-bit value
rep e ned
by Tim

The ap ent high/low
mes. Note that a duty cycle of 0% or 100% does not have any edges.

ct a clock frequency, consider the longest expected high or low time, and set the clock
equency such that the 16-bit registers will not overflow.

at the minimum measurable high/low time is limited by the edge rate limit discussed in
ection 2.9.2.

to a high and low word. One way to do this is
 do a modulus divide by 2 to determine the LSW, and a normal divide by 216 (keep the

et. After reset, a read of the timer value will

f the

s if no

.9.1.5 Firmware Counter Input (Mode 5)

re jump to an interrupt
ervice routine on each edge.

r reset, a read of the timer value will
turn zero until a new edge is detected. If a timer is reset and read in the same function call,

.9.1.6 Firmware Counter Input With Debounce (Mode 6)

ware
 to an interrupt service routine on

ach edge.

cor s the high and low time of a signal on the external pin, which provides the duty cycle,
idth, and period of the signal. Returns 4 bytes, where the first two bytes (least

nifi ant word or LSW) are a 16-bit value representing the number of clock ticks during the
nal, and the second two bytes (most significant word or MSW) a

res nting the number of clock ticks during the low signal. The clock frequency is determi
erClockBase/TimerClockDivisor.

propriate value is updated on every edge, so a read returns the most rec
ti

To sele
fr

Note th
S

When using the LabJackUD driver the value returned is the entire 32-bit value. To determine
the high and low time this value should be split in

16to
quotient and discard the remainder) to determine the MSW.

Writing a value of zero to the timer performs a res
return zero until a new edge is detected. If a timer is reset and read in the same function call,
the read returns the value just before the reset. The duty cycle reset is special, in that i
signal is low at the time of reset, the high-time/low-time registers are set to 0/65535, but if the
signal is high at the time of reset, the high-time/low-time registers are set to 65535/0. Thu
edges occur before the next read, it is possible to tell if the duty cycle is 0% or 100%.

2
On every rising edge seen by the external pin, this mode increments a 32-bit register. Unlike
the pure hardware counters, these timer counters require that the firmwa
s

Writing a value of zero to the timer performs a reset. Afte
re
the read returns the value just before the reset.

2
Intended for frequencies less than 10 Hz, this mode adds a debounce feature to the firmware
counter, which is particularly useful for signals from mechanical switches. On every applicable
edge seen by the external pin, this mode increments a 32-bit register. Unlike the pure hard
counters, these timer counters require that the firmware jump
e

The debounce period is set by writing the timer value. The low byte of the timer value is a
number from 0-255 that specifies a debounce period in 16 ms increments (plus an extra 0-16
ms of variability):

Debounce Period = (0-16 ms) + (TimerValue * 16 ms)

 35

In the high byte (bits 8-16) of the timer value, bit 0 determines whether negative edges (bit 0

ith a value of 1, meaning that the debounce period is 16-32 ms
nd negative edges will be counted. When the input detects a negative edge, it increments the

 debounce period can be set long enough so

at bouncing on both the switch closure and switch open is ignored.

 Output (Mode 7)
utputs a square wave at a frequency determined by TimerClockBase/TimerClockDivisor

r of

n the following table:

bout 10 MHz on the FIO lines. Accordingly, at
igh frequencies the output waveform will get less square and the amplitude will decrease.

 For

2.9.1.8 Quadrature Input (Mode 8)
Requires 2 timer channels used in adjacent pairs (0/1 or 2/3). Even timers will be quadrature
channel A, and odd timers will be quadrature channel B. Timer#Value passed has no effect.
The U6 does 4x quadrature counting, and returns the current count as a signed 32-bit integer
(2’s complement). The same current count is returned on both even and odd timer value
parameters.

Writing a value of zero to either or both timers performs a reset of both. After reset, a read of
either timer value will return zero until a new quadrature count is detected. If a timer is reset
and read in the same function call, the read returns the value just before the reset.

clear) or positive edges (bit 0 set) are counted.

Assume this mode is enabled w
a
count by 1, and then waits 16-32 ms before re-arming the edge detector. Any negative edges
within the debounce period are ignored. This is good behavior for a normally-high signal where
the switch closure causes a brief low signal. The
th

Writing a value of zero to the timer performs a reset. After reset, a read of the timer value will
return zero until a new edge is detected. If a timer is reset and read in the same function call,
the read returns the value just before the reset.

2.9.1.7 Frequency
O
divided by 2*Timer#Value. The Value passed should be between 0-255, where 0 is a diviso
256. By changing the clock configuration and timer value, a wide range of frequencies can be
output, as shown i

Mode 7 Frequency Ranges
Divisor=1 Divisor=1

TimerBaseClock Value=1 Value=256
0 4 MHz 2000000.0 7812.50
1 12 MHz 6000000.0 23437.50
2 48 MHz (Default) 24000000.0 93750.00

Divisor=1 Divisor=256
Value=1 Value=256

3 1 MHz /Divisor 500000.0 7.629
4 4 MHz /Divisor 2000000.0 30.518
5 12 MHz /Divisor 6000000.0 91.553

The frequency output has a -3 dB frequency of a

6 48 MHz /Divisor 24000000.0 366.211

h

The output does not necessarily start instantly, but rather waits for the internal clock to roll.
example, if the output frequency is 100 Hz, that means the period is 10 milliseconds, and thus
after the command is received by the device it could be anywhere from 0 to 10 milliseconds
before the start of the frequency output.

 36

2.9.1.9 Timer Stop Input (Mode 9)
This mode should only be assigned to Timer1. On every rising edge seen by the external pin,
this mode increments a 16-bit register. When that register matches the specified timer value
(stop count value), Timer0 is stopped. The range for the stop count value is 1-65535.
Generally, the signal applied to Timer1 is from Timer0, which is configured as output. One
place where this might be useful is for stepper motors, allowing control over a certain number of
steps.

Once this timer reaches the specified stop count value, and stops the adjacent timer, the timers
must be reconfigured to restart the output.

When Timer0 is stopped, it is still enabled but just not outputting anything. Thus rather than

turning to whatever previous digital I/O state it had, it goes to input (which has a 100 kΩ pull-

ad (Modes 10 & 11)
he LabJack U6 has a free-running internal 64-bit system timer with a frequency of 4 MHz.

 upper 32-bits of this timer. An FIO line is allocated for

.

e 11.

ode 11, the upper 32 bits of the system timer, is not available for stream reads. Note that

.9.1.11 Period Measurement (16-Bit, Modes 12 & 13)
 modes described above (modes 2 & 3), except that

otes

re
up). That means the best results are obtained if Timer0 was initially configured as input (factory
default), rather than output-high or output-low.

The MSW of the read from this timer mode returns the number of edges counted, but does not
increment past the stop count value. The LSW of the read returns edges waiting for.

2.9.1.10 System Timer Low/High Re
T
Timer modes 10 & 11 return the lower or
these modes like normal, even though they are internal readings and do not require any
external connections. This system timer cannot be reset, and is not affected by the timer clock

If using both modes 10 & 11, read both in the same low-level command and read 10 befor

M
when streaming on the U6, the timing is known anyway (elapsed time = scan rate * scan
number) and it does not make sense to stream the system timer modes 10 or 11.

2
Similar to the 32-bit edge-to-edge timing
hardware capture registers are used to record the edge times. This limits the times to 16-bit
values, but is accurate to the resolution of the clock, and not subject to any errors due to
firmware processing delays.

Note that the minimum measurable period is limited by the edge rate limit discussed in Section
2.9.2.

2.9.2 Timer Operation/Performance N
Note that the specified timer clock frequency is the same for all timers. That is, TimerClockBase
and TimerClockDivisor are singular values that apply to all timers. Modes 0, 1, 2, 3, 4, 7, 12,
and 13, all are affected by the clock frequency, and thus the simultaneous use of these modes
has limited flexibility. This is often not an issue for modes 2 and 3 since they use 32-bit
registers.

The output timer modes (0, 1, and 7) are handled totally by hardware. Once started, no
processing resources are used and other U6 operations do not affect the output.

 37

The edge-detecting timer input modes do require U6 processing resources, as an interrupt is

ess

an 1 edge per 33 μs. For multiple timers, all can process an edge simultaneously, but if for

dges are applied. If streaming is occurring at the same time, the maximum edge rate will be
m

 appear on both the DB37 connector and screw terminals, so care must be taken to

,

-

A and 10uA appear on both the DB37 connector and screw
rminals with 0 Ω between the duplicate connections. DAC0-DAC1 appear on both the DB37

ls with 0 Ω between the duplicate connections. MIO/CIO0-

round, Vs, AIN, DAC, FIO, and MIO are all described in earlier sections.

Vm+/Vm- are bipolar power supplies intended to power external multiplexer ICs such as the
DG408 from Intersil. The multiplexers can only pass signals within their power supply range, so
Vm+/Vm- can be used to pass bipolar signals. Nominal voltage is ±12 volts at no load. Both

required to handle each edge. Timer modes 2, 3, 5, 9, 12, and 13 must process every
applicable edge (rising or falling). Timer modes 4 and 8 must process every edge (rising and
falling). To avoid missing counts, keep the total number of processed edges (all timers) l
than 30,000 per second. That means that in the case of a single timer, there should be no more
th
instance both timers get an edge at the same time, 66 μs should be allowed before any further
e
less (7,000 per second), and since each edge requires processing time the sustainable strea
rates can also be reduced.

2.10 SPC (or VSPC)
The SPC (possibly labeled VSPC) terminal is use for manually resetting default values or
jumping in/out of flash programming mode.

2.11 DB37
The DB37 connector brings out analog inputs, analog outputs, FIO, and other signals. Some
ignalss

avoid a short circuit.

DB37 Pinouts

1 GND 14 AIN9 27 Vs
2 PIN2 (200uA) 15 AIN7 28 Vm+
3 FIO6 16 AIN5 29 DAC1
4 FIO4 17 AIN3 30 GND
5 FIO2 18 AIN1 31 AIN12
6 FIO0 19 GND 32 AIN10

9 Vm- 22 FIO5 35 AIN4

7 MIO1/CIO1 20 PIN20 (10uA) 33 AIN8
8 GND 21 FIO7 34 AIN6

Some signals appear in multiple locations. Outputs might use both locations at the same time
but inputs should only have a connection to one location at a time. AIN0-AIN3 appear on both
the DB37 connector and screw terminals with 4.4 kΩ between the duplicate connections. FIO0
FIO3 appear on both the DB37 connector and screw terminals with 940 Ω between the
duplicate connections. 200u

10 GND 23 FIO3 36 AIN2
11 DAC0 24 FIO1 37 AIN0
12 AIN13 25 MIO0/CIO0
13 AIN11 26 MIO2/CIO2

te
connector and screw termina
MIO/CIO2 appear on both the DB15 connector and DB37 connector with 0 Ω between the
duplicate connections.

G

 38

lines have a 100 ohm source impedance, and are designed to provide 2.5 mA or less. This is

t

ge could eventually occur.

If Vm+/Vm- are used to power multiplexers, series diodes are recommended as shown in Figure
9 of the Intersil DG408 datasheet. Not so much to protect the mux chips, but to prevent current
from going back into Vm+/Vm-. Use Schottky diodes to minimize voltage drop.

On the U6, PIN2/PIN20 bring out the 200uA/10uA current sources.

2.11.1 CB37 Terminal Board
The CB37 terminal board from LabJack connects to the U6’s DB37 connector and provides
convenient screw terminal access to all lines. The CB37 is designed to connect directly to the
U6, but can also connect via a 37-line 1:1 male-female cable.

When using the analog connections on the CB37, the effect of ground currents should be
onsidered, particularly when a cable is used and substantial current is sourced/sunk through
e CB37 terminals.

due to
B37

g
nce ground. An easy way to do this on the CB37 is to use GND as the

ssive
 current is the return

I/O bits 8 through 15, and
e CIO are addressed as bits 16-19.

0-7 FIO0-FIO7
8-15 EIO0-EIO7
16-19 CIO0-CIO3

the same voltage supply used internally by the U6 to bias the analog input amplifier and
multiplexers. If this supply is loaded more than 2.5 mA, the voltage can droop to the point that
the maximum analog input range is reduced. If this supply is severely overloaded (e.g. shor
circuited), then dama

c
th

For instance, a test was done with a 3 foot cable between the CB37 and U6, and a 100 ohm
load placed from Vs to GND on the CB37 (~50 mA load). A single-ended measurement of AIN4
shorted to CB37 GND returned about 2100 μV. Even with just the 5 mA ground current
the LED on the CB37, about 200 uV of offset was noted. With a direct connection of the C
to the U6, these offsets dropped to about 170 uV and 8 uV. A measurement of AIN5 shorted to
AGND resulted in no noticeable offset in all cases.

When any sizeable cable lengths are involved, a good practice is to separate current carryin
ground from ADC refere
current source/sink, and use AGND as the reference ground. This works well for pa
sensors (no power supply), such as a thermocouple, where the only ground
of the input bias current of the analog input.

2.11.2 EB37 Experiment Board
The EB37 experiment board connects to the LabJack U6’s DB37 connector and provides
convenient screw terminal access. Also provided is a solderless breadboard and useful power
supplies. The EB37 is designed to connect directly to the LabJack, but can also connect via a
37-line 1:1 male-female cable.

2.12 DB15
The DB15 connector brings out 12 additional digital I/O. It has the potential to be used as an
expansion bus, where the 8 EIO are data lines and the 4 CIO are control lines.

In the Windows LabJackUD driver, the EIO are addressed as digital
th

 39

These 12 channels include an internal series resistor that provides overvoltage/short-circuit
protection. These series resistors also limit the ability of these lines to sink or source current.
Refer to the specifications in Appendix A.

All digital I/O on the U6 have 3 possible states: input, output-high, or output-low. Each bit
can be configured individually. When configured as an input, a bit has a ~100 kΩ pull-up
resistor to 3.3 volts. When configured as output-high, a bit is connected to the internal 3.3 volt
upply (through a se

of I/O

ries resistor). When configured as output-low, a bit is connected to GND

t

he LabJack, or can connect via a standard 15-line 1:1 male-
male DB15 cable.

modules,

ules. Output or input types of digital I/O
d. The RB12 is designed to accept G4 series digital I/O modules from
tible modules from other manufacturers such as the G5 series from Grayhill.

vailable with voltage ratings up to 200 VDC or 280 VAC, and current

s
(through a series resistor).

DB15 Pinouts
1 Vs 9 CIO0
2 CIO1 10 CIO2
3 CIO3 11 GND
4 EIO0 12 EIO1
5 EIO2 13 EIO3
6 EIO4 14 EIO5
7 EIO6 15 EIO7
8 GND

2.12.1 CB15 Terminal Board
The CB15 terminal board connects to the LabJack U6’s DB15 connector. It provides convenien
screw terminal access to the 12 digital I/O available on the DB15 connector. The CB15 is
designed to connect directly to t
fe

2.12.2 RB12 Relay Board
he RB12 provides a convenient interface for the U6 to industry standard digital I/O T

allowing electricians, engineers, and other qualified individuals, to interface a LabJack with high
voltages/currents. The RB12 relay board connects to the DB15 connector on the LabJack, using

e 12 EIO/CIO lines to control up to 12 I/O modth
modules can be use
Opto22, and compa
Output modules are a

tings up to 3.5 amps. ra

 40

2.13 OEM Connector Options
As of this writing, the U6 is only produced in the normal form factor with screw-terminals and DB
connectors, but the PCB does have alternate holes available for 0.1” pin-header installation.

Connectors J2 and J3 provide pin-header alternatives to the DB15 and DB37 connectors. The
J2 and J3 holes are always present, but are obstructed when the DB15 and DB37 are installed:

J2
1 GND 2
3 CIO0 4

VS
CIO1

12 EIO4
13 EIO5 14 EIO6
15 EIO7 16 GND

5 CIO2 6 CIO3
7 GND 8 EIO0
9 EIO1 10 EIO2
11 EIO3

J3
1 GND 2 GND 3 PIN20 (10uA)
4 PIN2 (200uA) 5 FIO7 6 FIO6
7 FIO5 8 FIO4 9 FIO3
10 FIO2 11 FIO1 12 FIO0
13 MIO0/CIO0 14 MIO1/CIO1 15 MIO2/CIO2
16 GND 17 Vs 18 Vm-
19 Vm+ 20 GND 21 DAC1
22 DAC0 23 GND 24 AIN13
25 AIN12 26 AIN11 27 AIN10
28 AIN9 29 AIN8 30 AIN7
31 AIN6 32 AIN5 33 AIN4
34 AIN3 35 AIN2 36 AIN1
37 AIN0 38 GND 39 GND
40 GND

 41

3. Operation

3.1 Command/Response
Everything besides streaming is done in command/response mode, meaning that all
communication is initiated by a command from the host which is followed by a response from
he U6. t

For everything besides pin configuration, the low-level Feedback function is the primary function
used, as it writes and reads virtually all I/O on the U6. The Windows UD driver uses the
Feedback function under-the-hood to handle most requests besides configuration and
streaming.

The following tables show typical measured execution times for command/response mode. The
time varies primarily with the number of analog inputs requested, and is not noticeably affected
by the number of digital I/O, DAC, timer, and counter operations, except when the packet size is
big enough that multiple low-level commands must be used.

These times were measured using the example program “allio.c” (VC6_LJUD). The program
executes a loop 1000 times and divides the total time by 1000, and thus includes everything
(Windows latency, UD driver overhead, communication time, U6 processing time, etc.).

Following is the milliseconds for a single channel command/response AIN read at the different
resolution index values.

Res Index Res (bits) ms
1 15.9 0.6
2 16.4 0.6
3 16.9 0.6
4 17.5 0.6
5 17.9 0.7
6 18.4 0.8

 18.8 1.2
 19.1 1.9
 19.6 4.1
0 20.6 14.2

11 21.6 68
12 21.9 161

7
8
9
1

Res is the effective (RMS) resolution. +/-10 volt range used for this test.

Table 3-1. Typical Feedback Function Execution Times (+/-10 volt range)

A “USB high-high” configuration means the U6 is connected to a high-speed USB2 hub which is
then connected to a high-speed USB2 host. Even though the U6 is not a high-speed USB
device, such a configuration does provide improved performance.

 42

3.2 Stream Mode
The highest input data rates are obtained in stream mode. Stream is a continuous hardware

nnels is scanned at a specified scan rate. The scan rate

s are collected, they are placed in a small FIFO buffer on the U6, until retrieved by

s a feature called auto-recovery. If the buffer overflows, the U6 will continue

ed
es

SB can also be limited by other factors such as speed of the PC and
rogram design. One general technique for robust continuous streaming would be increasing

ss.

e conversion of a single channel, while a scan is defined as a
ls being acquired. That means the maximum scan rate for a
5 = 10 kscans/second.

ote: Stream mode literally returns only 16-bits of binary data per sample. The RMS
solution values exceeding 16.0 reflect the low noise of the 16-bit data.

ed by most readings. This
ata is calculated by collecting 1000 samples and evaluating the standard deviation (RMS
oise). The second ENOB column is the noise-free resolution, and is the resolution obtained by

all readings. This data is calculated by collecting 1000 samples and evaluating the maximum

timed input mode where a list of cha
specifies the interval between the beginning of each scan. The samples within each scan are
acquired as fast as possible.

s sampleA
the host. The buffer typically holds 984 samples, but the size ranges from 512 to 984
depending on the number of samples per packet. Each data packet has various measures to
ensure the integrity and completeness of the data received by the host.

he U6 useT
streaming but discard data until the buffer is emptied, and then data will be stored in the buffer
again. The U6 keeps track of how many packets are discarded and reports that value. Based
on the number of packets discarded, the UD driver adds the proper number of dummy samples
(-9999.0) such that the correct timing is maintained.

The table below shows various stream performance parameters. Some systems might require
a USB high-high configuration to obtain the maximum speed. A “USB high-high” configuration
means the U6 is connected to a high-speed USB2 hub which is then connected to a high-spe

 the U6 is not a high-speed USB device, such a configuration doUSB2 host. Even though
often provide improved performance.

tream data rates over US
p
the priority of the stream proce

A sample is defined as a singl
single conversion of all channe
stream of five channels is 50k/

Max Stream
Res Index

ENOB ENOB Noise Interchannel
Delay (

Table 3-4. Stream Performance (+/-10 volt range)

*N
re

ENOB stands for effective number of bits. The first ENOB column is the commonly used
“effective” resolution, and can be thought of as the resolution obtain
d
n

(Samples/s) (RMS) (Noise-Free) (16-bit Counts) μs)
1 50000
2 30000
3 16000
4 8800
5 4500

15.8 13.4 ±3.0
16.2* 14.0 ±2.0
16.6* 14.4 ±1.5
17.0* 14.4 ±1.5
17.1* 15.0 ±1.0

6 2200 17.3* 16.0 ±0.5

8 500 18.7* 16.0 ±0.5
7 1000 17.7* 16.0 ±0.5

 43

value minus the minimum value (peak-to-peak noise). Similarly, the Noise Counts column is the
 on counts from a 16-bit reading.

puts, Timers, and Counters

able 3-5. Special Stream Channels

e the least significant word (LSW, lower 2 bytes) of the
t

nted, channel number 224 must be sampled after that

d

st).

Adding these special channels to the stream scan list does not configure those inputs. If any of
the FIO or EIO lines have been configured as outputs, timers, or counters, a channel 193 read
will still be performed without error but the values from those bits should be ignored. The
timers/counters (200-224) must be configured before streaming using normal timer/counter
configuration commands.

The timing for these special channels is the same as for normal analog channels. For instance,
a stream of the scan list {0,1,200,224,201,224} counts as 6 channels, and the maximum scan
rate is determined by taking the maximum sample rate at the specified resolution and dividing
by 6.

rs configured in mode 2 or 3 (32-bit period
easurement). It is possible for the LSW to roll, but the MSW be captured before it is

asy to
nly the LSW or MSW

hould be used and not both.

peak-to-peak noise based

Interchannel delay is the time between successive channels within a stream scan.

.2.1 Streaming Digital In3
There are special channel numbers that allow digital inputs, timers, and counters, to be
streamed in with analog input data.

Channel#
193 EIO_FIO
200 Timer0
201 Timer1
210 Counter0
211 Counter1
224 TC_Capture

T

Channel number 193 returns the input states of 16 bits of digital I/O. FIO is the lower 8 bits and
EIO is the upper 8 bits.

hannels 200-201 and 210-211 retrievC
specified timer/counter. At the same time that any one of these is sampled, the most significan
word (MSW, upper 2 bytes) of that particular timer/counter is stored in an internal capture
register (TC_Capture), so that the proper value can be sampled later in the scan. For any
imer/counter where the MSW is wat

channel and before any other timer/counter channel. For example, a scan list of
{200,224,201,224} would get the LSW of Timer0, the MSW of Timer0, the LSW of Timer1, an
the MSW of Timer1. A scan list of {200,201,224} would get the LSW of Timer0, the LSW of

imer1, and the MSW of Timer1 (MSW of Timer0 is loT

 must be taken when streaming timeSpecial care

m
incremented. That means the resulting value will be low by 65536 clock ticks, which is e
detect in many applications, but if this is an unacceptable situation then o
s

Mode 11, the upper 32 bits of the system timer, is not available for stream reads. Note that
when streaming on the U6, the timing is known anyway (elapsed time = scan rate * scan
number) and it does not make sense to stream the system timer modes 10 or 11.

 44

4. LabJackUD High-Level Driver
The low-level U6 functions are described in Section 5, but most Windows applicatio

e LabJackUD driver instead.
ns will use

ended to install the

r consists of a single executable. This installer places the
driver (LabJackUD.dll) in the Windows System directory, along with a support DLL
(LabJackUSB.dll). Generally this is c:\Windows\System32\.

Other files, including the header and Visual C library file, are installed to the LabJack drivers
directory which defaults to c:\Program Files\LabJack\drivers\.

4.1 Overview
kUD functions is as follows:

uests to perform (Add).
• Execute the list (Go).

ult.
s.
hat

_ioPUT_DAC, which is used to update

ioPUT_CONFIG or LJ_ioGET_CONFIG). One example of a Special

t
constant LJ_tmPWM8, which specifies a timer mode. This constant has a numeric value of

is call is finding the desired device and creating a handle that

s

th

The driver requires a PC running Windows XP or Vista. It is recomm
software before making a USB connection to a LabJack.

The download version of the installe

The general operation of the LabJac

• Open a LabJack.
• Build a list of req

• Read the result of each request (Get).

At the core, the UD driver only has 4 basic functions: Open, AddRequest, Go, and GetRes
Then with these few functions, there are many constants used to specify the desired action
When programming in any language, it is recommended to have the header file handy, so t
constants can be copied and pasted into the code.

The first type of constant is an IOType, which is always passed in the IOType parameter of a
function call. One example of an IOType is the constant LJ
the value of an analog output (DAC).

The second type of constant is a Channel Constant, also called a Special Channel. These
constants are always passed in the Channel parameter of a function call. For the most part,
these are used when a request is not specific to a particular channel, and go with the
configuration IOTypes (LJ_
Channel is the constant LJ_chLOCALID, which is used to write or read the local ID of the device.

The third major type of constant used by the UD driver is a Value Constant. These constants
are always passed in the Value parameter of a function call. One example of a Value Constan
is the
1, which could be passed instead, but using the constant LJ_tmPWM8 makes for programming
code that is easier to read.

Following is pseudocode that performs various actions. First, a call is done to open the device.

he primary work done with thT
points to the device for further function calls. In addition, opening the device performs variou
configuration and initialization actions, such as reading the calibration constants from the
device:

 45

/
//over USB and get a handle to the device.
/Use the following line to open the first found LabJack U6

//The general form of the open function is:
//OpenLabJack (DeviceType, ConnectionType, Address, FirstFound, *Handle)

//Open the first found LabJack U6 over USB.
lngErrorcode = OpenLabJack (LJ_dtU6, LJ_ctUSB, "1", TRUE, &lngHandle);

Second, a list of requests is built in the UD driver using AddRequest calls. This does not involve
any low-level communication with the device, and thus the execution time is relatively
instantaneous:

//Request that DAC0 be set to 2.5 volts.
//The general form of the AddRequest function is:
//AddRequest (Handle, IOType, Channel, Value, x1, UserData)
lngErrorcode = AddRequest (lngHandle, LJ_ioPUT_DAC, 0, 2.50, 0, 0);

//Request a single-ended read from AIN3.
lngErrorcode = AddRequest (lngHandle, LJ_ioGET_AIN, 3, 0, 0, 0);

Third, the list of requests is processed and executed using a Go call. In this step, the driver
determines which low-level commands must be executed to process all the requests, calls those
low-level functions, and stores the results. This example consists of two requests, one analog
input read and one analog output write, which can both be handled in a single low-level
Feedback call (Section 5.2.5):

//Execute the requests.
lngErrorcode = GoOne (lngHandle);

Finally, GetResult calls are used to retrieve the results (errorcodes and values) that were stored
by the driver during the Go call. This does not involve any low-level communication with the
device, and thus the execution time is relatively instantaneous:

//Get the result of the DAC0 request just to check for an errorcode.
//The general form of the GetResult function is:
//GetResult (Handle, IOType, Channel, *Value)
lngErrorcode = GetResult (lngHandle, LJ_ioPUT_DAC, 0, 0);

//Get the AIN3 voltage. We pass the address to dblValue and the
//voltage will be returned in that variable.
lngErrorcode = GetResult (lngHandle, LJ_ioGET_AIN, 3, &dblValue);

The AddRequest/Go/GetResult method is often the most efficient. As shown above, multiple
requests can be executed with a single Go() or GoOne() call, and the driver might be able to
optimize the requests into fewer low-level calls. The other option is to use the eGet or ePut
functions which combine the AddRequest/Go/GetResult into one call. The above code would
then look like (assuming the U6 is already open):

//Set DAC0 to 2.5 volts.
//The general form of the ePut function is:
//ePut (Handle, IOType, Channel, Value, x1)
lngErrorcode = ePut (lngHandle, LJ_ioPUT_DAC, 0, 2.50, 0);

//Read AIN3.
//The general form of the eGet function is:
//eGet (Handle, IOType, Channel, *Value, x1)
lngErrorcode = eGet (lngHandle, LJ_ioGET_AIN, 3, &dblValue, 0);

 46

/get handles both the DAC command and

d, and they are generally interchangeable. See Section 4.3 for

n parameters, and some of the

unction
tained from the OpenLabJack

• Channel – This is an input to all request/result functions that generally specifies
 channel of I/O is being written/read, although with the config IOTypes

ial constants are passed for channel to specify what is being configured.
ult functions that is used to

write or read the value for the item being operated on.
arameter is only used in some of the request/result functions, and is

eded for certain IOTypes.
is parameter is only used in some of the request/result functions,

 along with the request, and returned unmodified
by the result. Can be used to store any sort of information with the request, to

.1.1 Function Flexibility

any of the functions are repeated with different forms of

rd

gle “S” replace the IOType parameter with a const char * which is a
tring. A string can then be passed with the name of the desired constant. Functions with a

ere the LabJackUD.h file can be included and the constants used directly:
dRequest(Handle, LJ_ioGET_CONFIG, LJ_ioHARDWARE_VERSION,0,0,0);

In the case of the U6, the first example using add/go
AIN read in a single low-level call, while in the second example using ePut/eGet two low-level
commands are used. Examples in the following documentation will use both the add/go/get

ethod and the ePut/eGet methom
more pseudocode examples.

ll the request and result functions always have 4 commoA
functions have 2 extra parameters:

• Handle – This is an input to all request/result functions that tells the f
what LabJack it is talking to. The handle is ob
function.

• IOType – This is an input to all request/result functions that specifies what type
of action is being done.

which
spec

• Value – This is an input or output to all request/res

• x1 – This p
used when extra information is ne

• UserData – Th
and is data that is simply passed

allow a generic parser to determine what should be done when the results are
received.

4
The driver is designed to be flexible so that it can work with various different LabJacks with
different capabilities. It is also designed to work with different development platforms with
different capabilities. For this reason, m
parameters, although their internal functionality remains mostly the same. In this
documentation, a group of functions will often be referred to by their shortest name. For
example, a reference to Add or AddRequest most likely refers to any of the three variations:
AddRequest(), AddRequestS() or AddRequestSS().

In the sample code, alternate functions (S or SS versions) can generally be substituted as
desired, changing the parameter types accordingly. All samples here are written in pseudo-C.

Functions with an “S” or “SS” appended are provided for programming languages that can’t
include the LabJackUD.h file and therefore can’t use the constants included. It is generally poor
programming form to hardcode numbers into function calls, if for no other reason than it is ha
to read. Functions with a sin
s
double “SS” replace both the IOType and Channel with strings. OpenLabJackS replaces both
DeviceType and ConnectionType with strings since both take constants.

For example:

In C, wh
Ad

 47

The bad way (hard to read) when LabJackUD.h cannot be included:

luded, is to pass strings:

ontinuing on this vein, the function StringToConstant() is useful for error handling routines, or

_ERROR err;
”, “LJ_ioHARDWARE_VERSION”,0,0,0);

ht.

et must be called from the same thread for a particular set of
quests/results. Internally the list of requests and results are split by thread. This allows

quests without accidentally getting data from one thread
d then results return LJE_NO_DATA_AVAILABLE or a

milar error, chances are the requests and results are in different threads.

ve the same ID. Its not really a
oblem if Add is called first, but if Get is called on a new thread results could be returned from

by-thread basis. Since the
iver cannot tell when a thread has ended, the results are kept in memory for that thread

p when unloaded.
estroyed

 threads are
ft behind. Since each request only uses ?? bytes, and as mentioned the ID's will eventually

ly

s

he one big exception to the thread safety of this driver is in the use of the Windows
 As is warned in the MSDN documentation, using

sing any resources, and more importantly,
d on a thread that is currently

bject will be left open on
evice and access to the device will be impossible until the application is

 devices that have interprocess
 access to the device

lication is restarted.

AddRequest(Handle, 1001, 10, 0, 0, 0);

The better way when LabJackUD.h cannot be inc
AddRequestSS(Handle, “LJ_ioGET_CONFIG”, “LJ_ioHARDWARE_VERSION”,0,0,0);

C
with the GetFirst/Next functions which do not take strings. The StringToConstant() function
takes a string and returns the numeric constant. So, for example:

LJ
err = AddRequestSS(Handle, “LJ_ioGETCONFIG
if (err == StringToConstant(“LJE_INVALID_DEVICE_TYPE”))
 do some error handling..

Once again, this is much clearer than:

 (err == 2) if

4.1.2 Multi-Threaded Operation
This driver is completely thread safe. With some very minor exceptions, all these functions can
be called from multiple threads at the same time and the driver will keep everything straig
Because of this Add, Go, and G
re
multiple threads to be used to make re

to another. If requests are added, anin
si

The driver tracks which thread a request is made in by the thread ID. If a thread is killed and
then a new one is created, it is possible for the new thread to ha
pr
the thread that already ended.

As mentioned, the list of requests and results is kept on a thread-
dr
regardless. This is not a problem in general as the driver will clean it all u
When it can be a problem is in situations where threads are created and d

ntinuously. This will result in the slow consumption of memory as requests on oldco
le
get recycled, it will not be a huge memory loss. In general, even without this issue, it is strong
recommended to not create and destroy a lot of threads. It is terribly slow and inefficient. Use
thread pools and other techniques to keep new thread creation to a minimum. That is what i
done internally.

T
TerminateThread() function.
TerminateThread() will kill the thread without relea
releasing any synchronization objects. If TerminateThread() is use

 the middle of a call to this driver, more than likely a synchronization oin
the particular d
restarted. On some devices, it can be worse. On
synchronization, such as the U12, calling TerminateThread() may kill all

rough this driver no matter which process is using it and even if the appth

 48

Avoid using TerminateThread()! All device calls have a timeout, which defaults to 1 second, but
can be changed. Make sure to wait at least as long as the timeout for the driver to finish.

 49

4.2 Function Reference
The LabJack driver file is named LabJackUD.dll, and contains the functions described in this

ome parameters are common to many functions:

 then passed on to other
functions to identify the opened LabJack. (long, signed 32-bit integer).

 made to
ve multiple prototypes. The

eclarations that follow, are written in C.

 C, these functions expect null terminated 8 bit ASCII
s translates to a particular development environment is beyond the scope of this

cumentation. A const char * is a pointer to a string that won’t be changed by the driver.
stant such as “this is a string”. A char * is a pointer to
es must be preallocated to hold the possible strings

ded

section.

S

• LJ_ERROR – A LabJack specific numeric errorcode. 0 means no error. (long, signed
32-bit integer).

• LJ_HANDLE – This value is returned by OpenLabJack, and

To maintain compatibility with as many languages as possible, every attempt has been
keep the parameter types very basic. Also, many functions ha
d

 help those unfamiliar with strings inTo
strings. How thi
do
Usually this means it can simply be a con
a string that will be changed. Enough byt
that will be returned. Functions with char * in their declaration will have the required length of
the buffer documented below.

Pointers must be initialized in general, although null (0) can be passed for unused or unnee
values. The pointers for GetStreamData and RawIn/RawOut requests are not optional. Arrays
and char * type strings must be initialized to the proper size before passing to the DLL.

4.2.1 ListAll()
Returns all the devices found of a given DeviceType and ConnectionType. Currently only USB
is supported.

ListAllS() is a special version where DeviceType and ConnectionType are strings rather than
longs. This is useful for passing string constants in languages that cannot include the header
file. The strings should contain the constant name as indicated in the header file (such as
“LJ_dtU6” and ”LJ_ctUSB”). The declaration for the S version of open is the same as below
except for (const char *pDeviceType, const char *pConnectionType, …).

Declaration:
LJ_ERROR _stdcall ListAll (long DeviceType,

long ConnectionType,
long *pNumFound,
long *pSerialNumbers,
long *pIDs,
double *pAddresses)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• DeviceType – The type of LabJack to search for. Constants are in the
labjackud.h file.

 50

• ConnectionType – Enter the constant for the type of connection to use in the
search. Currently, only USB is supported for this function.

• pSerialNumbers – Must pass a pointer to a buffer with at least 128 elements.
• pIDs – Must pass a pointer to a buffer with at least 128 elements.
• pAddresses – Must pass a pointer to a buffer with at least 128 elements.

Outputs:
• pNumFound – Returns the number of devices found, and thus the number of

valid elements in the return arrays.
• pSerialNumbers – Array contains serial numbers of any found devices.
• pIDs – Array contains local IDs of any found devices.
• pAddresses – Array contains IP addresses of any found devices. The function

DoubleToStringAddress() is useful to convert these to string notation.

4.2.2 OpenLabJack()
Call OpenLabJack() before communicating with a device. This function can be called multiple
times, however, once a LabJack is open, it remains open until your application ends (or the DLL
is unloaded). If OpenLabJack is called repeatedly with the same parameters, thus requesting
the same type of connection to the same LabJack, the driver will simply return the same
LJ_HANDLE every time. Internally, nothing else happens. This includes when the device is
reset, or disconnected. Once the device is reconnected, the driver will maintain the same
handle. If an open call is made for USB, and then Ethernet, a different handle will be returned
for each connection type and both connections will be open.

OpenLabJackS() is a special version of open where DeviceType and ConnectionType are
strings rather than longs. This is useful for passing string constants in languages that cannot
include the header file. The strings should contain the constant name as indicated in the header
file (such as “LJ_dtU6” and ”LJ_ctUSB”). The declaration for the S version of open is the same
as below except for (const char *pDeviceType, const char *pConnectionType, …).

Declaration:
LJ_ERROR _stdcall OpenLabJack (long DeviceType,

long ConnectionType,
const char *pAddress,
long FirstFound,
LJ_HANDLE *pHandle)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• DeviceType – The type of LabJack to open. Constants are in the labjackud.h
file.

• ConnectionType – Enter the constant for the type of connection, USB or
Ethernet.

• pAddress – Pass the local ID or serial number of the desired LabJack. If
FirstFound is true, Address is ignored.

• FirstFound – If true, then the Address and ConnectionType parameters are
ignored and the driver opens the first LabJack found with the specified
DeviceType. Generally only recommended when a single LabJack is connected.
Currently only supported with USB. If a USB device is not found, it will try
Ethernet but with the given Address.

Outputs:
 51

• pHandle – A pointer to a handle for a LabJack.

he eGet and ePut functions do AddRequest, Go, and GetResult, in one step.

The G
double where the result is placed, but can be used for outputs if pValue is preset to the desired
val er
of scan

GetS() and ePutS() are special versions of these functions where IOType is a string rather

.

cial versions of these functions where IOType and Channel are
trings rather than longs. This is useful for passing string constants in languages that cannot

ersions except for (…, const char *pIOType, const char *pChannel, …).

 ePut is the same as eGet except that Value is not a pointer (…, double

4.2.3 eGet() and ePut()
T

 e et versions are designed for inputs or retrieving parameters as they take a pointer to a

ue. This is also useful for things like StreamRead where a value is input and output (numb
s requested and number of scans returned).

The ePut versions are designed for outputs or setting configuration parameters and will not
return anything except the errorcode.

e
than a long. This is useful for passing string constants in languages that cannot include the
header file, and is generally used with all IOTypes except put/get config. The string should
contain the constant name as indicated in the header file (such as “LJ_ioANALOG_INPUT”)
The declarations for the S versions are the same as the normal versions except for (…, const
char *pIOType, …).

eGetSS() and ePutSS() are spe
s
include the header file, and is generally only used with the put/get config IOTypes. The strings
should contain the constant name as indicated in the header file (such as “LJ_ioPUT_CONFIG”
and “LJ_chLOCALID”). The declaration for the SS versions are the same as the normal
v

The declaration for
Value, …), and thus is an input only.

Declaration:
LJ_ERROR _stdcall eGet (LJ_HANDLE Handle,

long IOType,
long Channel,
double *pValue,
long x1)

Parameter Description:
Returns: LabJack errorc
Inputs:

• Handle – Han Jack().
• IOType – The
• Channel – The channel number of the particular IOType.
• pValue – Pointer to Value sends and receives data.

nal parameter used by some IOTypes.

• pValue – Pointer to Value sends and receives data.

odes or 0 for no error.

dle returned by OpenLab
type of request. See Section 4.3.

• x1 – Optio
Outputs:

 52

4.2.4 eA
This functio p
results via

The param mber

ts equal to NumRequests.

Declaration

ddGoGet()
asses multiple requests via arrays, then executes a GoOnen () and returns all the

the same arrays.

eters that start with “*a” are arrays, and all must be initialized with at least a nu
of elemen

:
LJ_ERROR s

long *aChannels,
double *aValues,
long *ax1s,

 _ tdcall eAddGoGet (LJ_HANDLE Handle,
 long NumRequests,

long *aIOTypes,

long *aRequestErrors,
long *GoError,
long *aResultErrors)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().
• NumRequests – This is the number of requests that will be made, and thus

number of results that will be returned. All the arrays must be initialized with at
least this many elements.

• aIOTypes – An array which is the list of IOTypes.
• aChannels – An array which is the list of Channels.

 the

• aValues – An array which is the list of Values to write.
ax1s – An array which is the list of x1s.

• aValues – An array w read.
• aRequestErrors – An array which is the list of errorcodes from each

AddRequest().
• GoError – The errorc e() call.
• aResultErrors – An array which is the list of errorcodes from each GetResult().

 ite t

When Add q ot be
retrieved b n e by
device basis, so you can call AddRe
performing

AddReque) or
the current thr
a new request
device to exec

•
Outputs:

hich is the list of Values

ode returned by the GoOn

4.2.5 AddRequest()
Adds an m o the list of requests to be performed on the next call to Go() or GoOne().

Re uest() is called on a particular Handle, all previous data is erased and cann
y a y of the Get functions until a Go function is called again. This is on a devic

quest() with a different handle while a device is busy
 its I/O.

st(only clears the request and result lists on the device handle passed and only f
ead. For example, if a request is added to each of two different devices, and then
 is added to the first device but not the second, a call to Go() will cause the first
ute the new request and the second device to execute the original request.

 53

In general, o call is unpredictable, except
at all configuration type requests are executed before acquisition and output type requests.

rsion of the Add function where IOType is a string rather than a

e the header file,
contain the

tion where IOType and Channel are strings
e
ld

 in the header file (such as “LJ_ioPUT_CONFIG” and
r

 the execution order of a list of requests in a single G
th

AddRequestS() is a special ve
long. This is useful for passing string constants in languages that cannot includ

nd is generally used with all IOTypes except put/get config. The string should a
constant name as indicated in the header file (such as “LJ_ioANALOG_INPUT”). The
declaration for the S version of Add is the same as below except for (…, const char *pIOType,
…).

ddRequestSS() is a special version of the Add funcA
rather than longs. This is useful for passing string constants in languages that cannot includ
the header file, and is generally only used with the put/get config IOTypes. The strings shou
ontain the constant name as indicatedc

“LJ_chLOCALID”). The declaration for the SS version of Add is the same as below except fo
(…, const char *pIOType, const char *pChannel, …).

Declaration:
LJ_ERROR _stdcall AddRequest (LJ_HANDLE Handle,

long IOType,
long Channel,
double Value,
long x1,
double UserData)

arameter Description:P
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().
• IOType – The type of request. See Section 4.3.

Channel – The channel number of the particular IOType.
nels.

• x1 – Optional parameter used by some IOTypes.
• UserData – Da y passed along with the request, and returned

unmodified by GetFirstResult() or GetNextResult(). Can be used to store any
sort of information with the request, to allow a generic parser to determine what
should be done when the results are received.

utputs:

4.2.6 Go
After using erform, call Go() to actually
perform th e cks to be performed.
After callin data or errors.

e called repeatedly to repeat the current list of requests. Go() does not clear the list
of requests R quest() call to a particular

evice will clear the previous list of requests on that particular device only.

•
• Value – Value passed for output chan

ta that is simpl

O
• None

()
 AddRequest() to make an internal list of requests to p
e r quests. This function causes all requests on all open LabJa
g Go(), call GetResult() or similar to retrieve any returned

Go() can b
. ather, after a call to Go(), the first subsequent AddRe

d

 54

Note that for a single Go() or GoOne() call, the order of execution of the request list cannot be

such, will be done before the actual acquisition or setting of

predicted. Since the driver does internal optimization, it is quite likely not the same as the order
of AddRequest() function calls. One thing that is known, is that configuration settings like
anges, stream settings, and r

outputs.

eclaration:D
LJ_ERROR _stdcall Go()

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• None
Outputs:

• None

.2.7 GoOne()
fter using AddRequest() to make an internal list of requests to perform, call GoOne() to

ests. This function causes all requests on one particular LabJack to be
 similar to retrieve any returned data or

GoOne() c
the list of requ
subsequent Ad ice will clear the previous list of requests on that
particular d i

Note that f a e request list cannot be
predicted. n t is quite likely not the same as the order

uest at configuration settings like
tr quisition or setting of

outputs.

Declaration

4
A
actually perform the requ
performed. After calling GoOne(), call GetResult() or
errors.

an be called repeatedly to repeat the current list of requests. GoOne() does not clear
ests. Rather, after a particular device has performed a GoOne(), the first
dRequest() call to that dev

ev ce only.

or single Go() or GoOne() call, the order of execution of th
Si ce the driver does internal optimization, i

() function calls. One thing that is known, is thof AddReq
ranges, s eam settings, and such, will be done before the actual ac

:
LJ_ERROR s

arameter Description:

 _ tdcall GoOne(LJ_HANDLE Handle)

P

orcodes or 0 for no error.

utputs:

t()

Returns: LabJack err
Inputs:

• Handle – Handle returned by OpenLabJack().
O

• None

4.2.8 GetResul
Calling either Go function creates a list of results that matches the list of requests. Use
GetResult() to read the result and errorcode for a particular IOType and Channel. Normally this
function is called for each associated AddRequest() item. Even if the request was an output,
the errorcode should be evaluated.

 55

None of the Get functions will clear results from the list. The first AddRequest() call subsequen
to a Go call will clear the internal lists of requests and results for a particular device.

t

y

.
is useful for passing string constants in languages that cannot include the header file, and

 generally used with all IOTypes except put/get config. The string should contain the constant

/get config IOTypes. The strings should
ontain the constant name as indicated in the header file (such as “LJ_ioPUT_CONFIG” and
J_chLOCALID”). The declaration for the SS version of Get is the same as below except for

r *pIOType, const char *pChannel, …).

It is acceptable to pass NULL (or 0) for any pointer that is not required.

Declaration:

When processing raw in/out or stream data requests, the call to a Get function does not actuall
cause the data arrays to be filled. The arrays are filled during the Go call (if data is available),
and the Get call is used to find out many elements were placed in the array.

GetResultS() is a special version of the Get function where IOType is a string rather than a long
This
is
name as indicated in the header file (such as “LJ_ioANALOG_INPUT”). The declaration for the
S version of Get is the same as below except for (…, const char *pIOType, …).

GetResultSS() is a special version of the Get function where IOType and Channel are strings
rather than longs. This is useful for passing string constants in languages that cannot include
the header file, and is generally only used with the put
c
“L
(…, const cha

LJ_ERROR _stdcall GetResult (LE Handle,

long Channel,
double *pValue)

LJ_HAND
long IOType,

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

ular IOType.
Outputs:

4.2.9 GetFi
her Go function creates a list of results that matches the list of requests. Use

ugh the list of results in order. When either
nction returns LJE_NO_MORE_DATA_AVAILABLE, there are no more items in the list of

rstResult() to move back to the
e list.

one of the Get functions clear results from the list. The first AddRequest() call subsequent to a

on does not actually
ause the data arrays to be filled. The arrays are filled during the Go call (if data is available),

and the Get call is used to find out many elements were placed in the array.

• Handle – Handle returned by OpenLabJack().
• IOType – The type of request. See Section 4.3.
• Channel – The channel number of the partic

• pValue – A pointer to the result value.

rstResult() and GetNextResult()
Calling eit
GetFirstResult() and GetNextResult() to step thro
fu
results. Items can be read more than once by calling GetFi
beginning of th

UserData is provided for tracking information, or whatever else the user might need.

N
Go call will clear the internal lists of requests and results for a particular device.

When processing raw in/out or stream data requests, the call to a Get functi
c

 56

It is acceptable to pass NULL (or 0) for any pointer that is not required.

The parameter lists are the same for the GetFirstResult() and GetNextResult() declaration

s.

eclaration:D
FirstResult (LJ_HANDLE Handle,

long *pIOType,
long *pChannel,
double *pValue,

double *pUserData)

r Description:

LJ_ERROR _stdcall Get

long *px1,

Paramete
Returns: k errorcodes or 0 for no error.

puts:
• Handle – Handle returned by OpenLabJack().

Outputs:
ype – A pointer to the IOType of this item in the list.

• pUserData – A pointer to data that is simply passed along with the request, and
returned unmodified. Can be used to store any sort of information with the

.2.10 DoubleToStringAddress()

LabJac
In

• pIOT
• pChannel – A pointer to the channel number of this item in the list.
• pValue – A pointer to the result value.
• px1 – A pointer to the x1 parameter of this item in the list.

request, to allow a generic parser to determine what should be done when the
results are received.

4
Some special-channels of the config IOType pass IP address (and others) in a double. This
function is used to convert the double into a string in normal decimal-dot or hex-dot notation.

Declaration:
LJ_ERROR _stdcall DoubleToStringAddress (double Number,

char *pString,
long HexDot)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

•
 least 24 bytes.

If not equal to zero, the string will be in hex-dot notation rather than
l-dot.

utputs:
– A pointer to the string representation.

 normal decimal-dot or hex-dot notation into a double.

Number – Double precision number to be converted.
• pString – Must pass a buffer for the string of at
• HexDot –

decima
O

• pString

4.2.11 StringToDoubleAddress()
Some special-channels of the config IOType pass IP address (and others) in a double. This
function is used to convert a string in

 57

Declaration:
LJ_ERROR _stdcall StringToDoubleAddress (const char *pString,

double *pNumber,
long HexDot)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.

• pNumber – A pointer to the double precision representation.

e
rison could be done on the return values

 StringToConstant("LJ_ioANALOG_INPUT"))

_C is not recognized.

Declaration:

Inputs:
• pString – A pointer to the string representation.
• HexDot – If not equal to zero, the passed string should be in hex-dot notation

rather than decimal-dot.
Outputs:

4.2.12 StringToConstant()
Converts the given string to the appropriate constant number. Used internally by the S
functions, but could be useful to the end user when using the GetFirst/Next functions without th

bility to include the header file. In this case a compaa
such as:

if (IOType ==

This function returns LJ_INVALID e string ONSTANT if th

ng _stdcall StringToConstant (conlo st char *pString)

Parameter Description:

: Constant number of the passed string. Returns
Inputs:

• pString – A pointer to the string representation of the constant.
Outputs:

.2.13 ErrorToString()
pty string if not found.

• None

4
Outputs a string describing the given errorcode or an em

Declaration:
void _stdcall ErrorToString (LJ_ERROR ErrorCode,

char *pString)

arameter DescriptioP n:
Returns: LabJack errorcodes or 0 for no error.
nputs: I

• ErrorCode – LabJack errorcode.
• pString – Must pass a buffer for the string of at least 256 bytes.

utputs: O
• *pString – A pointer to the string representation of the errorcode.

 58

4.2.14 GetDriverVersion()
Returns the version number of this Windows LabJack driver.

eclaration:D
double _stdca

ll GetDriverVersion();

Parameter Description:
Returns: Driver version.
Inputs:

• None
Outputs:

• None

CVo
A utility fun o emperature.

Declaration

4.2.15 T ltsToTemp()
cti n to convert thermocouple voltage readings to t

:
pe, LJ_ERROR s

arameter De

 _ tdcall TCVoltsToTemp (long TCTy
double TCVolts,
double CJTempK,
double *pTCTempK)

scription:P
Returns: LabJack errorcodes or 0 for no error.

ecifies the thermocouple type, such as LJ_ttK.

ated perature.

.2.16 ResetLabJack()
 to the LabJack hardware.

g the LabJack does not invalidate the handle, thus the device does not have to be
 ag conds after until the

LabJack is

In a future d iv

f res

eclaration

Inputs:
• TCType – A constant that sp
• TCVolts – The thermocouple voltage.
• CJTempK – The temperature of the cold junction in degrees K.

Outputs:
• pTCTempK – Returns the calcul thermocouple tem

4
Sends a reset command

Resettin
opened ain after a reset, but a Go call is likely to fail for a couple se

ready.

r er release, this function might be given an additional parameter that determines
et. the type o

D :
LJ_ERROR _stdcall ResetLabJack (LJ_HANDLE Handle);

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().

 59

Outputs:
• None

.2.17 eAIN()
alog input. This is a simple alternative to

exibl by this driver.

When nee

n

4
An “easy” function that returns a reading from one an

 fl e IOType based method normally usedthe very

ded, this function automatically configures the specified channel(s) for analog input.

Declaratio :

 _ tdcall eAIN (LJ_HANDLE Handle, LJ_ERROR s
long ChannelP,

le *Voltage,

long Binary,
long Reserved1,

arameter Description:

long ChannelN,
doub
long Range,
long Resolution,
long Settling,

long Reserved2)

P

LabJack errorcodes or 0 for no error.

• Handle – Handle returned by OpenLabJack().
 – The positive AIN channel to acquire.

• to acquire. For differential readings on
the U6, this should be and odd number equal to ChannelP+1. For single-ended

• Range – Pass a range constant.
tion – Pass a resolution index.

• Settling – Pass a settling factor.
• If this is nonzero (True), the Voltage parameter will return the raw

utputs:
Voltage – Returns the analog input reading, which is generally a voltage.

.2.18 eDAC()
This is a simple alternative to the

 this driver.

Declaration

Returns:
Inputs:

• ChannelP
ChannelN – The negative AIN channel

readings on the U6, this parameter should be 0 or 15.

• Resolu

Binary –
binary value.

• Reserved (1&2) – Pass 0.
O

•

4
An “easy” function that writes a value to one analog output.
very flexible IOType based method normally used by

:
LJ_ERROR _stdcall eDAC (LJ_HANDLE Handle,

double Voltage,
long Binary,

long Channel,

 60

long Reserved1,
long Reserved2)

Parameter Description:

eturns: LabJack errorcodes oR r 0 for no error.

rned by OpenLabJack().
output channel to write to.

e – The voltage to write to the analog output.
• – If this is nonzero (True), the value passed for Voltage should be binary.

ed (1&2) – Pass 0.

lternative to the
ery flexible IOType based method normally used by this driver.

, this function automatically configures the specified channel as a digital input.

Declaration:

Inputs:
• Handle – Handle retu
• Channel – The analog
• Voltag

Binary
• Reserv

4.2.19 eDI()
An “easy” function that reads the state of one digital input. This is a simple a
v

When needed

LJ_ERROR _stdcall eDI (LJ_HANDLE H

long Channel,
long *State)

r Des

andle,

te cription:Parame
Returns: LabJack errorcodes or 0 for no error.
Inputs:

 This is a simple alternative to the

• Handle – Handle returned by OpenLabJack().
• Channel – The channel to read. 0-22 corresponds to FIO0-MIO2.

Outputs:
• State – Returns the state of the digital input. 0=False=Low and 1=True=High.

4.2.20 eDO()
n “easy” function that writes the state of one digital output. A

very flexible IOType based method normally used by this driver.

When needed, this function automatically configures the specified channel as a digital output.

Declaration:

J_ERROR _stdcall L eDO (LJ_HANDLE Handle,
long Channel,
long State)

Parameter Description:

: LabJack errorcodes or 0 for no error. Returns
Inputs:

 61

• Handle – Handle returned by OpenLabJack().
el – The channel to write to. 0-22 corresponds to FIO0-MIO2.

• State – The state to write to the digital output. 0=False=Low and 1=True=High.

unters. This is a simple
lternative to the very flexible IOType based method normally used by this driver.

hen needed, this function automatically configures the needed lines as digital.

• Chann

4.2.21 eTCConfig()
An “easy” function that configures and initializes all the timers and co
a

W

Declaration:
LJ_ERROR _stdcall eTCCon LE Handle,

ableTimers,
bleCounters,

CPinOffset,
rClockBaseIndex,

merClockDivisor,
aTimerModes,

imerValues,
rved1,

long Reserved2)

fig (LJ_HAND
long *aEn
long *aEna
long T
long Time
long Ti
long *
double *aT
long Rese

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

. A nonzero value for an
that timer. For the U6, this array must always

re each element specifies whether that counter

be enabled when Counter0 is disabled. A nonzero value for an
nable that counter. For the U6, this array must

always have at least 2 elements.
d

counters.
• TimerClockBaseIndex – Pass a constant to set the timer base clock. The

ult is LJ_tc48MHZ.

ave at least 4 elements.
• aTimerValues – An array where each element is specifies the initial value for

that timer. For the U6, this array must always have at least 4 elements.

• Handle – Handle returned by OpenLabJack().
• aEnableTimers – An array where each element specifies whether that timer is

enabled. Timers must be enabled in order starting from 0, so for instance,
Timer1 cannot be enabled without enabling Timer0 also
array element specifies to enable
have at least 4 elements.

• aEnableCounters – An array whe
is enabled. Counters do not have to be enabled in order starting from 0, so
Counter1 can
array element specifies to e

• TCPinOffset – Value from 0-8 specifies where to start assigning timers an

defa
• TimerClockDivisor – Pass a divisor from 0-255 where 0 is a divisor of 256.
• aTimerModes – An array where each element is a constant specifying the mode

for that timer. For the U6, this array must always h

• Reserved (1&2) – Pass 0.

 62

4.2.22 eTCValues()
n “easy” function that update e timers and counters. This is a simple
lternative to the very flexible IOType based method normally used by this driver.

n:

A s and reads all th
a

Declaratio

OR

e *aTimerValues,
double *aCounterValues,
long Reserved1,
long Reserved2)

LJ_ERR _stdcall eTCValues (LJ_HANDLE Handle,
long *aReadTimers,
long *aUpdateResetTimers,
long *aReadCounters,
long *aResetCounters,
doubl

arameter Description:P
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().
aReadTimers – An array where each element specifies whether to read that

ze lement specifies to read that timer. For the
U6, this array m ve at least 4 elements.

• aUpdateRese array where each element specifies whether to
update/reset that timer. A nonzero value for an array element specifies to
update/reset that timer. For the U6, this array must always have at least 4

• s whether to read that

counter. A nonzero value for an array element specifies to read that counter.
t 2 elements.

 to reset that
counter. A nonzero value for an array element specifies to reset that counter.

• aTimerValues – An array where each element is the new value for that timer.
Each value is only updated if the appropriate element is set in the

pdateResetTimers array. For the U6, this array must always have at least 4

if

• aCounterValues – An array where each element is the value read from that
counter if the appropriate element is set in the aReadCounters array.

•
timer. A non ro value for an array e

ust always ha
tTimers – An

elements.
aReadCounters – An array where each element specifie

For the U6, this array must always have at leas
• aResetCounters – An array where each element specifies whether

For the U6, this array must always have at least 2 elements.

aU
elements.

• Reserved (1&2) – Pass 0.
utputs: O

• aTimerValues – An array where each element is the value read from that timer
the appropriate element is set in the aReadTimers array.

 63

4.3 Exa p
The follow p

 shown. The language used for the pseudocode is C.

her
teraction. The DeviceType for the U6 is:

one valid ConnectionType for the U6:

Following is example pseudocode to

//Open the first found LabJack U6
OpenLabJack (LJ_dtU6, LJ_ctUSB, "1", TRUE, &lngHandle);

The reason for the quotes around the ss parameter is a
string in the OpenLabJack function.

he ampersand (&) in front of lngHan that means we are passing the address
f that variable, rather than the value of that variable. In the definition of the OpenLabJack

meter is defined with an asterisk (*) in front, meaning that the function

al, fu ss) rather than a value, when the
parameter g
cannot be d
that can be ch
passing the ar

4.3.2 Con g
There are two

LJ_ioPUT_CONF
LJ_ioGET_CONF

The following c re then used in the channel parameter of the config function call to
specify wh is

LJ_chLOCALID
LJ_chHARDW E
LJ_chSERIA N
LJ_chFIRMW E
LJ_chBOOTL D
LJ_chPRODUCTI
LJ_chLED_S T

Following is example pseudocode to write and read the local ID:

m le Pseudocode
ing seudocode examples are simplified for clarity, and in particular no error checking

is

4.3.1 Open
The initial step is to open the LabJack and get a handle that the driver uses for furt
in

J_dtU6 L

There is only

LJ_ctUSB

 open a U6 over USB:

 over USB.

 address (“1”), is because the addre

T dle is a C notation
o
function, the handle para
expects a pointer, i.e. an address.

In gener a nction parameter is passed as a pointer (addre

 mi ht need to output something. The parameter value passed to a function in C
mo ified in the function, but the parameter can be an address that points to a value

anged. Pointers are also used when passing arrays, as rather than actually
ray, an address to the first element in the array is passed.

fi uration
IOTypes used to write or read general U6 configuration parameters:

IG
IG

onstants a
at being written or read:

AR _VERSION
L_ UMBER

_VERSION AR
OA ER_VERSION

D
TA E

 64

//Set the local ID to 4
ePut (lngHandle, LJ_ioP

.
UT_CONFIG, LJ_chLOCALID, 4, 0);

The IOTypes to retrieve a command/ t reading are:

LJ_ioGET_AIN //Single-ended. Negative channel is fixed as 0/15.
LJ_ioGET_AIN_DIFF //Specify neg

The following are IOTypes used to c range of a particular analog
input channel:

LJ_ioPUT_AIN_RANGE
J_ioGET_AIN_RANGE

the channel number, the following range constants are passed in the
ange IOType:

LJ_rgBIP10V
LJ_rgBIP1V
LJ_rgBIPP1V
LJ_rgBIPP01V

The follow a
parameters tha

LJ_chAIN_RESO //0=default, 1-8=high-speed ADC, 9-13=high-res ADC
LJ_chAIN_S T
LJ_chAIN_B A

Following is x

//Configure a
//settings t
//the paramet
AddRequest (l

//Configure AIN1 for +/- 10 volt range.
AddRequest (lngHandle, LJ_ioPUT_AIN_RANGE, 1, LJ_rgBIP10V, 0, 0);

r A
//reading, i
//channel is
AddRequest l

/Request a s
ddRequest (lngHandle, LJ_ioGET_AIN, 1, 0, 0, 0);

/Request a differential read of AIN2-AIN3.
ddRequest (lngHandle, LJ_ioGET_AIN_DIFF, 2, 0, 3, 0);

//Request a single-ended read of AIN2. Here we use the DIFF
//IOType, but pass x1=0 which does a single-ended measurement.
AddRequest (lngHandle, LJ_ioGET_AIN_DIFF, 2, 0, 0, 0);

//Execute the requests.

//Read the local ID.
Get (lngHandle, LJ_ioGET_CONFIG, LJ_chLOCALID, &dblValue, 0); e

4.3.3 Analog Inputs
response analog inpu

ative channel in x1.

onfigure (or read) the input

L

In addition to specifying
value parameter when doing a request with the AIN r

LJ_rgAUTO // LabJackUD Default

 // +/- 10V
 // +/- 1V

 // +/- 0.1V
 // +/- 0.01V

ing re special channels, used with the get/put config IOTypes, to configure
t apply to all analog inputs:

LUTION
ET LING_TIME //0=5us, 1=10us, 2=100us, 3=1ms, 4=10ms
IN RY

e ample pseudocode to read analog inputs:

ll analog inputs for max resolution. Like most
, his will apply to all further measurements until

er is changed or the DLL unloaded.
ngHandle, LJ_ioPUT_CONFIG, LJ_chAIN_RESOLUTION, 13, 0, 0);

//Configu e IN2 for +/- 1 volt range. This applies to any

 s ngle-ended or differential, where the positive
AIN2.

 (ngHandle, LJ_ioPUT_AIN_RANGE, 2, LJ_rgBIP1V, 0, 0);

ingle-ended read from AIN1. /
A

/
A

 65

GoOne (lngHandle);

//Since multiple requests were made with the same IOType
//and Channel, and only x1 was different, GetFirst/GetNext
//must be used to retrieve the results. The simple
/GetResult function does not use the x1 parameter and

specifying the IOType and Channel of the
 read, the GetFirst/GetNext functions retrieve

/Retrieve AIN1 voltage. GetFirstResult returns the IOType,
, Value, x1, and UserData from the first request.

In this example we are just retrieving the results in order

 0);

/Get th AIN2-AIN3 voltage.

 0);

he IOType to set the voltage on an analog output is:

/Set DAC0 to 2.5 volts.
ePut (lngHandle, LJ_ioPUT_DAC, 0, 2.50, 0);

Types used to write or read digital I/O information:

J_ioGET_DIGITAL_BIT //Also sets direction to input.

ets directions to input. x1 is number of bits.
AL_PORT_DIR //x1 is number of bits.

TATE //x1 is number of bits.

//Also sets direction to output.
//Also sets directions to output. x1 is number of bits.

is done with one of the port IOTypes, the Channel parameter is used to specify
e starting bit number, and the x1 parameter is used to specify the number of applicable bits.
he bit numbers corresponding to different I/O are:

-7 FIO0-FIO7

/
//thus there is no way to specify which result is desired.
//Rather than
//result to be
//the results in order. Normally, GetFirst/GetNext are best
//used in a loop, but here they are simply called in succession.

/
//Channel
//
//and Value is the only parameter we need.

FirstResult (lngHandle, 0, 0, &dblValue, 0,Get

e/
GetNextResult (lngHandle, 0, 0, &dblValue, 0, 0);

//Get the AIN2.
GetNextResult (lngHandle, 0, 0, &dblValue, 0,

4.3.4 Analog Outputs
T

LJ_ioPUT_DAC

The following is a special channel, used with the get/put config IOTypes, to configure a

arameter that applies to all DACs:p

LJ_chDAC_BINARY

Following is example pseudocode to set DAC0 to 2.5 volts:

/

4.3.5 Digital I/O
There are eight IO

L
LJ_ioGET_DIGITAL_BIT_DIR
LJ_ioGET_DIGITAL_BIT_STATE
J_ioGET_DIGITAL_PORT //Also sL

LJ_ioGET_DIGIT
LJ_ioGET_DIGITAL_PORT_S

LJ_ioPUT_DIGITAL_BIT
LJ_ioPUT_DIGITAL_PORT

When a request
th
T

0

 66

8-15 EIO0-EIO7
16-19 CIO0-CIO3
20-22 MIO0-MIO2

Note that the GetResult function does not have an x1 parameter. That means that if two (or
more) port requests are added with the same IOType and Channel, but different x1, the result

uld be undefined. The GetFirstResult/GetNextResult commands do
ultiple port requests

ations:

gHandle, LJ_ioGET_DIGITAL_BIT, 2, 0, 0, 0);

m FIO4-EIO5 (10-bits starting
el #4).
le, LJ_ioGET_DIGITAL_PORT, 4, 0, 10, 0);

CI (5-b ital channel #14)
20). =0, CIO0=1,

Handl IGITAL_PORT, 14, 20, 5, 0);

Execute the requests.

 LJ_io

.
ndle, LJ_ioGET_DIGITAL_PORT, 4, &dblValue);

rmation:

he following mode constants are passed in the
de IOType:

t

)

 //Firmware counter input (with debounce)
//Frequency output

retrieved by GetResult wo
have the x1 parameter, and thus can handle retrieving responses from m

ith the same IOType and Channel. w

Following is example pseudocode for various digital I/O oper

//Request a read from FIO2.
AddRequest (ln

//Request a read fro
//from digital chann
ddRequest (lngHandA

//Set FIO3 to output-high.
AddRequest (lngHandle, LJ_ioPUT_DIGITAL_BIT, 3, 1, 0, 0);

//Set EIO6- O2 its starting from dig

6=0, EIO7//to b10100 (=d That is EIO
//CIO1=0, and CIO2=1.
AddRequest (lng e, LJ_ioPUT_D

//
GoOne (lngHandle);

//Get the FIO2 read.
GetResult (lngHandle, GET_DIGITAL_BIT, 2, &dblValue);

//Get the FIO4- IO5 readE
GetResult (lngHa

4.3.6 Timers & Counters
There are eight IOTypes used to write or read timer and counter info

LJ_ioGET_COUNTER
LJ_ioPUT_COUNTER_ENABLE
LJ_ioGET_COUNTER_ENABLE
LJ_ioPUT_COUNTER_RESET

LJ_ioGET_TIMER
LJ_ioPUT_TIMER_VALUE
LJ_ioPUT_TIMER_MODE
LJ_ioGET_TIMER_MODE

In addition to specifying the channel number, t
value parameter when doing a request with the timer mo

LJ_tmPWM16 //16-bit PWM outpu
LJ_tmPWM8 //8-bit PWM output
LJ_tmRISINGEDGES32 //Period input (32-bit, rising edges)
LJ_tmFALLINGEDGES32 //Period input (32-bit, falling edges
LJ_tmDUTYCYCLE //Duty cycle input
LJ_tmFIRMCOUNTER //Firmware counter input
LJ_tmFIRMCOUNTERDEBOUNCE
LJ_tmFREQOUT

 67

LJ_tmQUAD //Quadrature input
_tmTIMERSTOP //Timer stop input (odd timers only)

)

sing edges)
ng edges)

pes, to configure a

_chNUMBER_TIMERS_ENABLED //0-4

constants are passed in the value
y:

_tc4MHZ //4 MHz clock base
//12 MHz clock base

J_tc1MHZ_DIV //1 MHz clock base w/ divisor (no Counter0)
J_tc4MHZ_DIV //4 MHz clock base w/ divisor (no Counter0)

Hz clock base w/ divisor (no Counter0)
Hz clock base w/ divisor (no Counter0)

ample pseudocode for configuring various timers and a hardware counter:

causes the timers to start on FIO0.
andle, LJ_ioPUT_CONFIG, LJ_chTIMER_COUNTER_PIN_OFFSET, 0, 0, 0);

/Enable 2 timers. They will use FIO0-FIO1
ddRequest (lngHandle, LJ_ioPUT_CONFIG, LJ_chNUMBER_TIMERS_ENABLED, 2, 0, 0);

_ioPUT_COUNTER_ENABLE, 0, 0, 0, 0);

ilable line, FIO2.
ddRequest (lngHandle, LJ_ioPUT_COUNTER_ENABLE, 1, 1, 0, 0);

 use the same timer clock, configured here. The
 to 48MHZ_DIV, meaning that the clock divisor

LJ_tc48MHZ_DIV, 0, 0);

s clock.
PUT_CONFIG, LJ_chTIMER_CLOCK_DIVISOR, 48, 0, 0);

PUT_T 0, 0);

 LJ_i

LJ
LJ_tmSYSTIMERLOW //System timer low read (no FIO
LJ_tmSYSTIMERHIGH //System timer high read (no FIO)
LJ_tmRISINGEDGES16 //Period input (16-bit, ri
LJ_tmFALLINGEDGES16 //Period input (16-bit, falli

The following are special channels, used with the get/put config IOTy
parameter that applies to all timers/counters:

LJ
LJ_chTIMER_CLOCK_BASE //Value constants below
LJ_chTIMER_CLOCK_DIVISOR //0-255, where 0=256
LJ_chTIMER_COUNTER_PIN_OFFSET //0-8

With the clock base special channel above, the following
parameter to select the frequenc

LJ
LJ_tc12MHZ
LJ_tc48MHZ //48 MHz clock base
L
L
LJ_tc12MHZ_DIV //12 M
LJ_tc48MHZ_DIV //48 M
LJ_tcSYS //Equivalent to LJ_tc48MHZ

Following is ex

//First, an add/go/get block to configure the timers and counters.

/Set the pin offset to 0, which /

AddRequest (lngH

/
A

/Make sure Counter0 is disabled. /

AddRequest (lngHandle, LJ

//Enable Counter1. It will use the next ava
A

//All output timers
//base clock is set
//is supported and Counter0 is not available.
ddRequest (lngHandle, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_BASE, A

or to 48, creating a 1 MHz timer//Set the timer clock divi

AddRequest (lngHandle, LJ_io

PWM. //Configure Timer0 as 8-bit It will have a frequency
//of 1M/256 = 3906.25 Hz.

dRequest (lngHandle, LJ_io IMER_MODE, 0, LJ_tmPWM8, Ad

//Initialize the 8-bit PWM with a 50% duty cycle.
ddRequest (lngHandle, oPUT_TIMER_VALUE, 0, 32768, 0, 0); A

//Configure Timer1 as duty cycle input.
AddRequest (lngHandle, LJ_ioPUT_TIMER_MODE, 1, LJ_tmDUTYCYCLE, 0, 0);

/Execute the requests. /

GoOne (lngHandle);

 68

The following pseudocode demonstrates reading input timers/counters and updating the values

 simple ePut/eGet functions are used in the following pseudocode, but
ght combine the following calls into a single add/go/get block so that a

Get (lngHandle, LJ_ioGET_TIMER, 1, &dblValue, 0);

W) represents the high time

as set

);

hCycles / (dblHighCycles + dblLowCycles));

value.

 reset the input timer and the counter:

Reset the duty-cycle measurement (Timer1) to zero, by writing
e duty-cycle measurement is continuously

to reset to zero is to detect whether there has been a new

NTER_RESET, 1, 1, 0);

ote that if a timer/counter is read and reset at the same time (in the same Add/Go/Get block),
e just before reset.

.3.7 Stream Mode
ates are obtained in stream mode. The following IOTypes are used to

J_ioCLEAR_STREAM_CHANNELS

ate.

ream data IOType to
all sc r than retrieving each scanned channel

M_DATA.

of output timers. The
ome applications mis

single low-level call is used.

//Change Timer0 PWM duty cycle to 25%.
ePut (lngHandle, LJ_ioPUT_TIMER_VALUE, 0, 49152, 0);

//Read duty-cycle from Timer1.
e

/The duty cycle read returns a 32-bit value where the /

//least significant word (LS
//and the most significant word (MSW) represents the low
//time. The times returned are the number of cycles of
//the timer clock. In this case the timer clock w
//to 1 MHz, so each cycle is 1 microsecond.
dblHighCycles = (double)(((unsigned long)dblValue) % (65536)
dblLowCycles = (double)(((unsigned long)dblValue) / (65536));
dblDutyCycle = 100 * dblHig
dblHighTime = 0.000001 * dblHighCycles;
dblLowTime = 0.000001 * dblLowCycles;

//Read the count from Counter1. This is an unsigned 32-bit
eGet (lngHandle, LJ_ioGET_COUNTER, 1, &dblValue, 0);

Following is pseudocode to

//
//a value of zero. Th
//updated, so a reset is normally not needed, but one reason
//
//measurement or not.
ePut (lngHandle, LJ_ioPUT_TIMER_VALUE, 1, 0, 0);

//Reset Counter1 to zero.
ePut (lngHandle, LJ_ioPUT_COU

N
the read will return the valu

4
The highest input data r
control streaming:

L
LJ_ioADD_STREAM_CHANNEL
LJ_ioADD_STREAM_CHANNEL_DIFF //Put negative channel in x1.
J_ioSTART_STREAM //Value returns actual scan rL

LJ_ioSTOP_STREAM
LJ_ioGET_STREAM_DATA

The following constant is passed in the Channel parameter with the get st
specify a read returning anned channels, rathe
separately:

LJ_chALL_CHANNELS //Used with LJ_ioGET_STREA

 69

The following are sp cia nnels, used with the get/put config IOe l cha s, to write or read

J_chSTREAM_BUFFER_SIZE //UD driver stream buffer size in samples.

nly. 0=0% and 256=100%.
J_chSTREAM_BACKLOG_UD //Read-only. Number of samples.

ET ult 25. Range 1-25.

ollowing constants are passed in the value

Immediately return available data.
J_swALL_OR_NONE //No wait. Immediately return requested amount, or none.

ump wait mode.
d amount available.

cial c s left in the stream
never a stream packet
f the buffers, but can

o de ct pro

er on
e U6 itself. The U6 has a small buffer (512-984 samples) for data waiting to be transferred to

uch data is left in the
 full and 256 would

 the
mputer or communication link is too slow for some reason, the driver might not be able to

 U6

 data must be transferred
per low-level packet is

e parameter
_chSTREAM_READS_PER_SECOND to determine how many low-level packets to retrieve per read.

_BUFFER_SIZE . The

event overflow. After each read, use LJ_chSTREAM_BACKLOG_UD to determine how many

-recovery is used. If the
ontinue streaming but discard data until the buffer is emptied, and

any packets are
 of packets discarded, the UD driver

rrect timing is maintained.
uto-recovery will generally occur when the U6 buffer is 90-95% full.

k acquires inputs at a fixed interval, controlled by the hardware clock
d stores the data in a buffer. The LabJackUD driver automatically reads

Type
various stream values:

LJ_chSTREAM_SCAN_FREQUENCY
L
LJ_chSTREAM_WAIT_MODE
LJ_chSTREAM_DISABLE_AUTORECOVERY
LJ_chSTREAM_BACKLOG_COMM //Read-o
L
LJ_chSTREAM_SAMPLES_PER_PACK //Defa
LJ_chSTREAM_READS_PER_SECOND //Default 25.

W
p

ith the wait mode special channel above, the f
arameter to select the behavior when reading data:

LJ_swNONE //No wait.
L
LJ_swPUMP //Advanced message p
LJ_swSLEEP //Wait until requeste

The backlog spe hannels return information about how much data i
buffer on the U6 or in the UD driver. These parameters are updated whe
is read by the driver, and thus might not exactly reflect the current state o
be useful t te blems.

When streaming, the processor acquires data at precise intervals, and transfers it to a buff
th
the host. The LJ_chSTREAM_BACKLOG_COMM special channel specifies how m
U6 buffer (COMM or CONTROL are the same thing on the U6), where 0 means 0%
mean 100% full. The UD driver retrieves stream data from the U6 in the background, but if
co
read the data as fast as the U6 is acquiring it, and thus there will be data left over in the

ffer. bu

To obtain the maximum stream rates documented in Section 3.2, the
between host and U6 in large chunks. The amount of data transferred

thcontrolled by LJ_chSTREAM_SAMPLES_PER_PACKET . The driver will use
LJ

The size of the UD stream buffer on the host is controlled by LJ_chSTREAM
application software on the host must read data out of the UD stream buffer fast enough to
pr
samples are left in the buffer.

Since the data buffer on the U6 is fairly small a feature called auto
buffer overflows, the U6 will c
then data will be stored in the buffer again. The U6 keeps track of how m
discarded and reports that value. Based on the number
adds the proper number of dummy samples (-9999.0) such that the co
A

In stream mode the LabJac
on the device itself, an

 70

data from the hardware buffer and stores it in a PC RAM buffer until requested. The general

• Stop the stream.

FREQUENCY, scanRate, 0, 0);

ate * 2 channels * 5 seconds).
 scanRate*2*5, 0, 0);

J_chSTREAM_WAIT_MODE, LJ_swSLEEP, 0, 0);

Define the scan list as singled ended AIN2 then differential AIN0-AIN1.

0, 0);
dRequest (lngHandle, LJ_ioADD_STREAM_CHANNEL_DIFF, 0, 0, 1, 0);

et(lngHandle, LJ_ioSTART_STREAM, 0, &dblValue, 0);

ed scan rate divides into
ned in the value parameter

/from the start stream command.

, the data must be retrieved periodically to prevent the buffer from

d be the number of scans (all channels) or
rieve. The x1 parameter should be a pointer to an array that has

nt size. Keep in mind that the required number of elements if

d across all streaming channels. In other words, if two channels are
treaming, 0 and 1, and LJ_chALL_CHANNELS is the channel number for the read request, the data

 multiple channels are being streamed, data can be retrieved one channel at a time by passing
t removed from the internal

procedure for streaming is:

• Update configuration parameters.
• Build the scan list.
• Start the stream.
• Periodically retrieve stream data in a loop.

Following is example pseudocode to configure a 2-channel stream.

//Set the scan rate.
AddRequest (lngHandle, LJ_ioPUT_CONFIG, LJ_chSTREAM_SCAN_

//Give the UD driver a 5 second buffer (scanR
AddRequest (lngHandle, LJ_ioPUT_CONFIG, LJ_chSTREAM_BUFFER_SIZE,

//Configure reads to wait and retrieve the desired amount of data.
AddRequest (lngHandle, LJ_ioPUT_CONFIG, L

//
AddRequest (lngHandle, LJ_ioCLEAR_STREAM_CHANNELS, 0, 0, 0, 0);
AddRequest (lngHandle, LJ_ioADD_STREAM_CHANNEL, 2, 0,
Ad

//Execute the requests.
oOne (lngHandle); G

Next, start the stream:

//Start the stream.
eG

//The actual scan rate is dependent on how the desir
/the LabJack clock. The actual scan rate is retur/

/
actualScanRate = dblValue;
actualSampleRate = 2*dblValue;

Once a stream is started
overflowing. To retrieve data, add a request with IOType LJ_ioGET_STREAM_DATA. The Channel
parameter should be LJ_chALL_CHANNELS or a specific channel number (ignored for a single
hannel stream). The Value parameter shoulc

samples (single channel) to ret
been initialized to a sufficie
retrieving all channels is number of scans * number of channels.

Data is stored interleave
s
will be returned as Channel0, Channel1, Channel0, Channel1, etc. Once the data is read it is
removed from the internal buffer, and the next read will give new data.

If
a specific channel number in the request. In this case the data is no
 71

buffer until the last channel in the scan is requested. Reading the data from the last channel
m the

 if three channels are streaming, 0, 1 and 2 (in that order in the scan
t), and data is requested from channel 0, then channel 1, then channel 0 again, the request

ill ret
first get

 from channel 1, the reads from channels 0 and 2 also
 at a time (not using

an

mand should be called to determine how
imed read interval.

ration
d be ster than the PC clock, it is

m nded h time so that the

but the number of samples read per loop will be the same every

owing pseudocode reads data continuously in SLEEP mode as configured above:

numScans = 1000;

GET_STREAM_DATA, LJ_chALL_CHANNELS, &numScans, array);
actualNumberRead = numScans;

ves
//stream data from the U6 in the background, but if the computer
//is too slow for some reason the driver might not be able to read

(not necessarily all channels) is the trigger that causes the block of data to be removed fro
buffer. This means that
lis
for channel 0 the second time w urn the same data as the first request. New data will not

annel 2 is read, since channel 2 is last in the scan list. If the be retrieved until after ch
stream data request is for 10 samples
must be for 10 samples. Note that when reading stream data one channel
LJ_chALL_CHANNELS), the sc li not have duplicate channel numbers.an st c

here are three basic wait modes for retrieving the data: T

• LJ_swNONE: The Go call will retrieve whatever data is available at the time of the call
up to the requested amount of data. A Get com
many scans were retrieved. This is generally used with a software t
The number of samples read per loop iteration will vary, but the time per loop ite
will be pretty consistent. Since the LabJack clock coul fa
recom e to request more scans than are expected eac
application does not get behind.

• LJ_swSLEEP: This makes the Go command a blocking call. The Go command will loop
until the requested amount of is retrieved or no new data arrives from the device before
timeout. In this mode, the hardware dictates the timing of the application. The time per
loop iteration will vary,
time. A Get command should be called to determine whether all the data was retrieved,
or a timeout condition occurred and none of the data was retrieved.

• LJ_swALL_OR_NONE: If available, the Go call will retrieve the amount of data
requested, otherwise it will retrieve no data. A Get command should be called to
determine whether all the data was returned or none. This could be a good mode if
hardware timed execution is desirable, but without the application continuously waiting in
SLEEP mode.

he follT

//Read data until done.
while(!done)
{
 //Must set the number of scans to read each iteration, as the read
 //returns the actual number read.

 //Read the data. Note that the array passed must be sized to hold

//enough SAMPLES, and the Value passed specifies the number of SCANS
//to read.

 eGet(lngHandle, LJ_io

 //When all channels are retrieved in a single read, the data

//is interleaved in a 1-dimensional array. The following lines
//get the first sample from each channel.
channelA = array[0];
channelB = array[1];

 //Retrieve the current U6 backlog. The UD driver retrie

//the data as fast as the U6 is acquiring it, and thus there will
//be data left over in the U6 buffer.

 eGet(lngHandle, LJ_ioGET_CONFIG, LJ_chSTREAM_BACKLOG_COMM, &dblCommBacklog, 0);

 72

 //Retrieve the current UD driver backlog. If this is growing, then
//the application software is not pulling data from the UD driver
//fast enough.
eGet(lngHandle, LJ_ioGET_CONFIG, LJ_chSTREAM_BACKLOG_UD, &dblUDBacklog, 0);

}

Fina s

/Stop the stream.
rrorcode = ePut (Handle, LJ_ioSTOP_STREAM, 0, 0, 0);

w-level

n pipe. For the U6, 0
 the streaming pipe. The number of bytes to write/read is specified

d x1 is a pointer to a byte array for the data. When retrieving the result,
e value returned is the number of bytes actually read/written.

seudocode to write and read the low-level command ConfigTimerClock

00,0x00,0x00};

&numBytesToWrite, pwriteArray);

he bytes from the device.
Get(lngHandle, LJ_ioRAW_IN, 0, &numBytesToRead, preadArray);

ly

DO() //Write to 1 digital output.

reviously configured as

lly, top the stream:

/
e

4.3.8 Raw Output/Input
There are two IOTypes used to write or read raw data. These can be used to make lo
function calls (Section 5) through the UD driver. The only time these generally might be used is
to access some low-level device functionality not available in the UD driver, or when making OS
portable code.

LJ_ioRAW_OUT
LJ_ioRAW_IN

When using these IOTypes, channel # specifies the desired communicatio
is the normal pipe while 1 is
in value (1-16384), an
th

Following is example p
Section 5.2.4). (

writeArray[2] = {0x05,0xF8,0x02,0x0A,0x00,0x00,0x00,0x

mBytesToWrite = 10; nu
numBytesToRead = 10;

e bytes to the device. //Raw Out. This command writes th
, 0, eGet(lngHandle, LJ_ioRAW_OUT

/Raw In. This command reads t/

e

4.3.9 Easy Functions
The easy functions are simple alternatives to the very flexible IOType based method normal
used by this driver. There are 6 functions available:

eAIN() //Read 1 analog input.
eDAC() //Write to 1 analog output.
eDI() //Read 1 digital input.
e
eTCConfig() //Configure all timers and counters.
eTCValues() //Update/reset and read all timers and counters.

In addition to the basic operations, these functions also automatically handle configuration as
needed. For example, eDO() sets the specified line to digital output if p
analog and/or input, and eAIN() sets the line to analog if previously configured as digital.

 73

The first 4 functions should not be used when speed is critical with multi-channel reads. Thes
functions use one low-level function per operation, whereas using the normal Add/Go/Get
method with IOTypes, many operations can be combined into a single low-level call. With
single channel operations, however, there will be little difference between using an easy
function or Add/Go/Get.

The last two functions handle almost all functionality related to timers and counters, and will
usually be as efficient as any other method. These easy functions are recommended for most
timer/counter applications.

e

//T
//e N
//
//
eAIN(l
printf

//Set
//eDAC ary, Reserved1, Reserved2)
//
eDAC(l

//Read
//eDI
//
eDI(ln
pri

//Set
//eDO
//
eDO(ln

Fill the arrays with the desired values, then make the call.
,0}; //Enable Timer0-Timer1

 = {LJ_tmPWM8,LJ_tmRISINGEDGES32,0,0}; //Set timer modes
lTimerValues = {16384,0,0,0}; //Set PWM8 duty-cycle to 75%.

EnableTimers, *aEnableCounters, TCPinOffset,

 TimerClockBaseIndex, TimerClockDivisor, *aTimerModes,

//
eTCConfig(lngHandle, alngEnableTimers, alngEnableCounters, 4, LJ_tc48MHZ, 0,

Read and update
//the v
//Fill the arrays with the desired values, then make the call.
alngReadTimers = {0,1,0,0}; //Read Timer1
alngUpdateResetTimers = {1,1,0,0}; //Update Timer0 and reset Timer1
alngReadCounters = {1,0}; //Read Counter0

adblTim
//
//eTCVa
// *aCounterValues, Reserved1,

Following is example pseudocode:

ake a single-ended measurement from AIN3.
AI (Handle, ChannelP, ChannelN, *Voltage, Range, Resolution,

Settling, Binary, Reserved1, Reserved2)

ngHandle, 3, 15, &dblVoltage, LJ_rgAUTO, 0, 0, 0, 0, 0);
("AIN3 value = %.3f\n",dblVoltage);

DAC0 to 3.1 volts.
 (Handle, Channel, Voltage, Bin

ngHandle, 0, 3.1, 0, 0, 0);

 state of FIO2.
(Handle, Channel, *State)

gHandle, 2, &lngState);
ntf("FIO2 state = %.0f\n",lngState);

FIO3 to output-high.
(Handle, Channel, State)

gHandle, 3, 1);

//Enable and configure 1 output timer and 1 input timer, and enable Counter0.
//
alngEnableTimers = {1,1,0
alngTimerModes
adb
alngEnableCounters = {1,0}; //Enable Counter0
//
//eTCConfig (Handle, *a
//
// *aTimerValues, Reserved1, Reserved2);

alngTimerModes, adblTimerValues, 0, 0);

// and reset the input timer (Timer1), read and reset Counter0,

alue (duty-cycle) of the output timer (Timer0).

alngResetCounters = {1,0}; //Reset Counter0
erValues = {32768,0,0,0}; //Change Timer0 duty-cycle to 50%

lues (Handle, *aReadTimers, *aUpdateResetTimers, *aReadCounters,
 *aResetCounters, *aTimerValues,

// Reserved2);
//

 74

eT ues(lngHandle, alngReadTimers, alngUpdateResetTimers, alngReadCountersCVal ,
alngRes
printf("Timer1 value = %.0f\n",adblTimerValues[1]);
printf(

.3.10 SPI Serial Communication
eripheral Interface (SPI) communication as the master only. SPI is a

ynchronous serial protocol typically used to communicate with chips that support SPI as slave

his serial link is not an alternative to the USB connection. Rather, the host application will
rite/read data to/from the U6 over USB, and the U6 communicates with some other device

g this serial protocol is considered an advanced topic. A good
commended, and a logic analyzer or oscilloscope might be

J_ioSPI_COMMUNICATION // Value= number of bytes (1-50). x1= array.

l channels, used with the get/put config IOTypes, to configure various
arameters related to the SPI bus. See the low-level function description in Section 5.2.17 for

IN_NUM
N_NUM

eudocode to configure SPI communication:

;

/Do not disable automatic digital i/o direction configuration.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSPI_DISABLE_DIR_CONFIG,0,0,0);

.

st(ln , LJ_chSPI_CLOCK_FACTOR,0,0,0);

st(ln hSPI_MOSI_PIN_NUM,2,0,0);

0,0);

ddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSPI_CS_PIN_NUM,1,0,0);

etCounters, adblTimerValues, adblCounterValues, 0, 0);

"Counter0 value = %.0f\n",adblCounterValues[0]);

4
The U6 supports Serial P
s
devices.

T
w
using the serial protocol. Usin
knowledge of the protocol is re
needed for troubleshooting.

There is one IOType used to write/read data over the SPI bus:

L

The following are specia
p
more information about these parameters:

LJ_chSPI_AUTO_CS
LJ_chSPI_DISABLE_DIR_CONFIG
J_chSPI_MODE L

LJ_chSPI_CLOCK_FACTOR
LJ_chSPI_MOSI_PIN_NUM
LJ_chSPI_MISO_P
J_chSPI_CLK_PIL
LJ_chSPI_CS_PIN_NUM

Following is example ps

//First, configure the SPI communication.

//Enable automatic chip-select control.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSPI_AUTO_CS,1,0,0)

/

//Mode A: CPHA=1, CPOL=1
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSPI_MODE,0,0,0);

/Maximum clock rate (~100kHz). /

AddReque gHandle, LJ_ioPUT_CONFIG

//Set MOSI to FIO2.
AddReque gHandle, LJ_ioPUT_CONFIG, LJ_c

//Set MISO to FIO3.
ddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSPI_MISO_PIN_NUM,3,A

//Set CLK to FIO0.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSPI_CLK_PIN_NUM,0,0,0);

/Set CS to FIO1. /

A

 75

//Execute the configuration requests.
GoOne(lngHandle);

Following is pseudocode to do the actual SPI communication:

2 tion
he U6 supports Inter-Integrated Circuit (I2C or I2C) communication as the master only. I2C is a

unicate with chips that support I2C as slave
 I2C bus generally

ire to Vs and SCL to Vs, and also note that
I2C.

Rather, the host application will
h some other device

A good
nded, and a logic analyzer or oscilloscope might be

2C data:

nels used with the I2C IOType above:

Value= number of bytes (0-52). x1= array.
Value= number of bytes (0-50). x1= array.

_chI2C_GET_ACKS

s, to configure various
n description in Section 5.2.21 for

hI2 _SPEE

ck with an I C 24C01C EEPROM chip. Following
 example pseudocode to configure I2C to talk to that chip:

,0,0);

n

//Transfer the data.
eGet(lngHandle, LJ_ioSPI_COMMUNICATION, 0, &numBytesToTransfer, array);

4.3.11 I C Serial Communica
T
synchronous serial protocol typically used to comm
devices. Any 2 digital I/O lines are used for SDA and SCL. Note that the
requ s pull-up resistors of perhaps 4.7 kΩ from SDA
the screw terminals labeled SDA and SCL (if present) are not used for

This serial link is not an alternative to the USB connection.
write/read data to/from the U6 over USB, and the U6 communicates wit

g the serial protocol. Using this serial protocol is considered an advanced topic. usin
knowledge of the protocol is recomme
needed for troubleshooting.

re is one IOType used to write/read IThe

LJ_ioI2C_COMMUNICATION

The following are special chan

LJ_chI2C_READ //
J_chI2C_WRITE // L

LJ

The following are special channels, used with the get/put config IOType
parameters related to the I2C bus. See the low-level functio
more information about these parameters:

hI2C_ADDRESS_BYTE LJ_c
LJ_chI2C_SCL_PIN_NUM // 0-19. Pull-up resistor usually required.

d.LJ_chI2C_SDA_PIN_NUM // 0-19. Pull-up resistor usually require
LJ_chI2C_OPTIONS

C D_ADJUST LJ_c

The LJTick-DAC is an accessory from LabJa 2

is

0 or decimal 160. //The AddressByte of the EEPROM on the LJTick-DAC is 0xA
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chI2C_ADDRESS_BYTE,160

//SCL is FIO0

chI2C_SCL_PIN_NUM,0,0,0); AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_

//SDA is FIO1

equest(lngHandle, LJ_ioPUT_CONFIG, LJ_chI2C_SDA_PIN_NUM,1,0,0);AddR

//See description of low-level I2C function.

_CONFIG, LJ_chI2C_OPTIONS,0,0,0); AddRequest(l gHandle, LJ_ioPUT

 76

//See description of low-level I2C function. 0 is max speed of about 150 kHz.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chI2C_SPEED_ADJUST,0,0,0);

oOne(lngHandle);

m the EEPROM:

a. That is, there needs to be an ack after writing the address,
/not a stop condition. To accomplish this, we use Add/Go/Get to combine

oI2C_COMMUNICATION, LJ_chI2C_READ, numRead, array, 0);

nous Serial Communication
at supports asynchronous serial communication. The TX

pear on FIO/EIO after any timers and counters, so with no
 and pin offset set to 0, TX=FIO0 and RX=FIO1.

 common 8/n/1 format. Similar to RS232, except that the logic is normal
n to an RS232 device will require a converter chip such as the MAX233,

Rather, the host application will
e U6 communicates with some other device

tocol is considered an advanced topic. A good
lloscope might be

// Enables UART to begin buffering rx data.

er. x1= array.
// Flushes the rx buffer. All data discarded. Value ignored.

 32 bytes or less, that is how many bytes were read. If the size is more
e buffer.

//Execute the configuration requests.
G

Following is pseudocode to read 4 bytes fro

//Initial read of EEPROM bytes 0-3 in the user memory area.
//We need a single I2C transmission that writes the address and then reads
//the dat
/
//the write and read into a single low-level call.
numWrite = 1;
array[0] = 0; //Memory address. User area is 0-63.
AddRequest(lngHandle, LJ_ioI2C_COMMUNICATION, LJ_chI2C_WRITE, numWrite, array, 0);

numRead = 4;
ddRequest(lngHandle, LJ_iA

//Execute the requests.
GoOne(lngHandle);

For more example code, see the I2C.cpp example in the VC6_LJUD archive.

4.3.12 Asynchro
The U6 has a UART available th
(transmit) and RX (receive) lines ap
timers/counters enabled,

Communication is in the
CMOS/TTL. Connectio
which inverts the logic and shifts the voltage levels.

This serial link is not an alternative to the USB connection.

rite/read data to/from the U6 over USB, and thw
using the serial protocol. Using this serial pro
knowledge of the protocol is recommended, and a logic analyzer or osci
needed for troubleshooting.

ere is one IOType used to write/read asynchronous data: Th

LJ_ioASYNCH_COMMUNICATION

The following are special channels used with the asynch IOType above:

LJ_chASYNCH_ENABLE
LJ_chASYNCH_RX // Value= returns pre-read buffer size. x1= array.
LJ_chASYNCH_TX // Value= number to send (0-56), number in rx buff
LJ_chASYNCH_FLUSH

hen using LJ_chASYNCH_RX, the Value parameter returns the size of the Asynch buffer before W
the read. If the size is
than 32 bytes, then the call read 32 this time and there are still bytes left in th

 77

When using LJ_chASYNCH_TX, specify the number of bytes to send in the V
urns the size of the Asy

alue parameter. The
nch read buffer.

e following is a special channel, used with the get/put config IOTypes, to specify the baud

ith hardware revision 1.30 this is a 16-bit value that sets the baud rate according the following
0/(2 * Desired Baud). For example, a BaudFactor16 =
With hardware revision 1.21, the value is only 8-bit

/Read data. Always initialize array to 32 bytes.
_chASYNCH_RX, &numBytes, array);

s requiring maximum up-
is ca any of the options are

communication. If this
fined TimeoutPeriod before being reset, the specified actions will occur.

ote that while streaming, data is only going out, so some other command will have to be called

specified to cause a device reset, update the state of
output by user), or both.

 then use the
 reset the device on timeout.

ote that some USB hubs do not like to have any USB device repeatedly reset. With such

eout period
device. In such

t-to-default jumper can be used to turn off the watchdog. Power up the U6 with
ce again. This

y default values.

Value parameter ret

Th
rate for the asynchronous communication:

LJ_chASYNCH_BAUDFACTOR // 16-bit value for hardware V1.30. 8-bit for V1.21.

W
formula: BaudFactor16 = 2^16 - 4800000
63036 provides a baud rate of 9600 bps.
and the formula is BaudFactor8 = 2^8 – TimerClockBase/(Desired Baud).

Following is example pseudocode for asynchronous communication:

//Set data rate for 9600 bps communication.
Put(lngHandle, LJ_ioPUT_CONFIG, LJ_chASYNCH_BAUDFACTOR, 63036, 0); e

//Enable UART.
ePut(lngHandle, LJ_ioASYNCH_COMMUNICATION, LJ_chASYNCH_ENABLE, 1, 0);

//Write data.
eGet(lngHandle, LJ_ioASYNCH_COMMUNICATION, LJ_chASYNCH_TX, &numBytes, array);

/
eGet(lngHandle, LJ_ioASYNCH_COMMUNICATION, LJ

4.3.13 Watchdog Timer
he U6 has firmware based watchdog capability. Unattended systemT

time might use th pability to reset the U6 or the entire system. When
enabled, an internal timer is enabled which resets on any incoming USB
timer reaches the de
N
periodically to reset the watchdog timer.

Timeout of the watchdog on the U6 can be
1 digital I/O (must be configured as

Typical usage of the watchdog is to configure the reset defaults as desired, and
watchdog simply to

N
hubs, the operating system will quit reenumerating the device on reset and the computer will
have to be rebooted, so avoid excessive resets with hubs that seem to have this problem.

If the watchdog is accidentally configured to reset the processor with a very low tim
(such as 1 second), it could be difficult to establish any communication with the
a case, the rese
a short from FIO2 to SPC, then remove the jumper and power cycle the devi
resets all power-up settings to factor

ere is one IOType used to configure and control the watchdog: Th

LJ_ioSWDT_CONFIG // Channel is enable or disable constant.

 78

The watchdog settings are stored in non-volatile flash memory (and reloaded at reset), so every
durance of at least

e operation, but if this IOType is called in a high-
could be damaged.

e above:

atchdog
 in the driver only. The settings are not

he hardware until the LJ_ioSWDT_CONFIG IOType (above) is used:

TE_DIOA

llowing is example pseudocode to configure and enable the watchdog:

put.
/It would probably be better to do this by configuring the power-up defaults.
ddRequest(lngHandle, LJ_ioPUT_DIGITAL_BIT, 10,0,0,0);

.

;

igh.
ddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSWDT_DIOA_STATE,1,0,0);

ut(lngHandle, LJ_ioSWDT_CONFIG, LJ_chSWDT_DISABLE,0,0);

request with this IOType causes a flash erase/write. The flash has a rated en
20000 writes, which is plenty for reasonabl
speed loop the flash

The following are special channels used with the watchdog config IOTyp

LJ_chSWDT_ENABLE // Value is timeout in seconds (1-65535).
LJ_chSWDT_DISABLE

The following are special channels, used with the put config IOType, to configure w
options. These parameters cause settings to be updated
actually sent to t

LJ_chSWDT_RESET_DEVICE
LJ_chSWDT_UDPA
LJ_chSWDT_DIOA_CHANNEL
J_chSWDT_DIOA_STATE L

Fo

//Initialize EIO2 to output-low, which also forces the direction to out
/
A

//Specify that the device should be reset on timeout
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSWDT_RESET_DEVICE,1,0,0);

//Specify that the state of the digital line should be updated on timeout.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSWDT_UDPATE_DIOA,1,0,0)

//Specify that EIO2 is the desired digital line.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSWDT_DIOA_CHANNEL,10,0,0);

//Specify that the digital line should be set h
A

//Enable the watchdog with a 60 second timeout.
AddRequest(lngHandle, LJ_ioSWDT_CONFIG, LJ_chSWDT_ENABLE,60,0,0);

//Execute the requests.
GoOne(lngHandle);

Following is pseudocode to disable the watchdog:

//Disable the watchdog.
eP

4.3.14 Miscellaneous
The following are special channels, used with the get/put config IOTypes, to read/write the
calibration memory and user memory:

LJ_chCAL_CONSTANTS
LJ_chUSER_MEM

 79

For more information, see the low-level descriptions in Sections 5.2.6-5.2.8, and see the
Memory example in the VC6_LJUD archive.

The following wait IOType is used to create a delay between other actions:

esolution is 128 microseconds.

cute in the same low-
han what can be

 Add/Go/Get block
s to set FIO4 to output-high, wait 1024 microseconds, then set FIO4 to

LJ_ioPUT_WAIT // Channel ignored. Value = 0-8388480 microseconds. Actual
r

Any value (in microseconds) from 0-8388480 can be passed, but the actual resolution is 128
microseconds.

his is typically used to put a small delay between two actions that will exeT
level Feedback command. It is useful when the desired delay is less t

ccomplished through software. a

For example, a 1.024 millisecond pulse can be created by executing a single
that sequentially request
output-low.

 80

4.4 Errorcodes
All functions return an LJ_ERROR errorcode as listed in the following tables.

Errorcode Name Description

-2 LJE_UNABLE_TO_READ_CALDATA Warning: Defaults used instead.
ults used instead.

RROR
2 LJE_INVALID_CHANNEL_NUMBER Channel that does not exist (e.g. DAC2 on a

n a

4 LJE_UNABLE_TO_START_STREAM
_STOP_STREAM

_TO_STREAM
O_CONFIG_STREAM

N Overrun of the UD stream buffer.
9 LJE_STREAM_NOT_RUNNING

m packet received out of sequence.
al pin, or vice versa.

17 LJE_REQUEST_NOT_PROCESSED Previous request had an error.

23 LJE_SWDT_TIME_INVALID

28 LJE_STREAM_BAD_TRIGGER_SOURCE
VALID_TRIGGER

EAM_ADC0_BUFFER_OVERFLOW
33 LJE_STREAM_SAMPLE_NUM_INVALID

35 LJE_STREAM_SCAN_RATE_INVALID

-1 LJE_DEVICE_NOT_CALIBRATED Warning: Defa
0 LJE_NOE

UE9), or data from stream is requested o
channel that is not in the scan list.

3 LJE_INVALID_RAW_INOUT_PARAMETER

5 LJE_UNABLE_TO
6 LJE_NOTHING
7 LJE_UNABLE
8 LJE_BUFFER_OVERRU

_T

10 LJE_INVALID_PARAMETER
11 LJE_INVALID_STREAM_FREQUENCY
12 LJE_INVALID_AIN_RANGE
13 LJE_STREAM_CHECKSUM_ERROR
14 LJE_STREAM_COMMAND_ERROR
15 LJE_STREAM_ORDER_ERROR Strea
16 LJE_AD_PIN_CONFIGURATION_ERROR Analog request on a digit

19 LJE_SCRATCH_ERROR
20 LJE_DATA_BUFFER_OVERFLOW
21 LJE_ADC0_BUFFER_OVERFLOW
22 LJE_FUNCTION_INVALID

24 LJE_FLASH_ERROR
25 LJE_STREAM_IS_ACTIVE
26 LJE_STREAM_TABLE_INVALID
27 LJE_STREAM_CONFIG_INVALID

30 LJE_STREAM_IN
31 LJE_STR

34 LJE_STREAM_BIPOLAR_GAIN_INVALID

Table 4-1. Request Level Errorcodes (Part 1)

 81

Errorcode Name Description
36 LJE_TIMER_INVALID_MODE
37 LJE_TIMER_QUADRATURE_AB_ERROR
38 LJE_TIMER_QUAD_PULSE_SEQUENCE

40 LJE_TIMER_STREAM_ACTIVE
TIMER

ERROR

EXT_OSC_NOT_STABLE

ERROR

E_SHT_MEASREADY
54 LJE_SHT_ACK
55 LJE_SHT_SERIAL_RESET
56 LJE_SHT_COMMUNICATION
57 LJE_AIN_WHILE_STREAMING AIN not available to command/response

functions while the UE9 is streaming.
58 LJE_STREAM_TIMEOUT
60 LJE_STREAM_SCAN_OVERLAP New scan started before the previous scan

completed. Scan rate is too high.
61 LJE_FIRMWARE_VERSION_IOTYPE IOType not supported with this firmware.
62 LJE_FIRMWARE_VERSION_CHANNEL Channel not supported with this firmware.
63 LJE_FIRMWARE_VERSION_VALUE Value not supported with this firmware.
64 LJE_HARDWARE_VERSION_IOTYPE IOType not supported with this hardware.
65 LJE_HARDWARE_VERSION_CHANNEL Channel not supported with this hardware.
66 LJE_HARDWARE_VERSION_VALUE Value not supported with this hardware.
67 LJE_CANT_CONFIGURE_PIN_FOR_ANALOG
68 LJE_CANT_CONFIGURE_PIN_FOR_DIGITAL
70 LJE_TC_PIN_OFFSET_MUST_BE_4_TO_8

39 LJE_TIMER_BAD_CLOCK_SOURCE

41 LJE_ _PWMSTOP_MODULE_ERROR
42 LJE_TIMER_SEQUENCE_
43 LJE_TIMER_SHARING_ERROR
44 LJE_TIMER_LINE_SEQUENCE_ERROR
45 LJE_
46 LJE_INVALID_POWER_SETTING
47 LJE_PLL_NOT_LOCKED
48 LJE_INVALID_PIN
49 LJE_IOTYPE_SYNCH_
50 LJE_INVALID_OFFSET
51 LJE_FEEDBACK_IOTYPE_NOT_VALID
52 LJE_SHT_CRC
53 LJ

 82

Table 4-2. Request Level Errorcodes (Part 2)

Errorcode Name Description
1000 LJE_MIN_GROUP_ERROR Errors above this number stop all requests.

is caught.

1003 LJE_INVALID_HANDLE
1004 LJE_DEVICE_NOT_OPEN AddRequest() called even though Open() failed.
1005 LJE_NO_DATA_AVAILABLE GetResult() called without calling a Go

function, or a channel is passed that was not
in the request list.

1006 LJE_NO_MORE_DATA_AVAILABLE
1007 LJE_LABJACK_NOT_FOUND LabJack not found at the given id or address.
1008 LJE_COMM_FAILURE Unable to send or receive the correct number

of bytes.
1009 LJE_CHECKSUM_ERROR
1010 LJE_DEVICE_ALREADY_OPEN
1011 LJE_COMM_TIMEOUT
1012 LJE_USB_DRIVER_NOT_FOUND
1013 LJE_INVALID_CONNECTION_TYPE
1014 LJE_INVALID_MODE

1001 LJE_UNKNOWN_ERROR Unrecognized error that
1002 LJE_INVALID_DEVICE_TYPE

Table 4-3. Group Level Errorcodes

The first two tables list errors which are specific to a request. For example,
LJE_INVALID_CHANNEL_NUMBER. If this error occurs, other requests are not affected. The
last table lists errors which cause all pending requests for a particular Go() to fail with the same
error. If this type of error is received the state of any of the request is not known. For example,
if requests are executed with a single Go() to set the AIN range and read an AIN, and the read
fails with an LJE_COMM_FAILURE, it is not known whether the AIN range was set to the new
value or whether it is still set at the old value.

 83

 84

5. Low-Level Function Reference
This section describes the low level functions of the U6. These are commands sent over USB
directly to the processor on the U6.

The majority of Windows users will use the high-level UD driver rather than these low-level
functions.

5.1 General Protocol
Following is a description of the general U6 low-level communication protocol. There are two
types of commands:

Normal: 1 command word plus 0-7 data words.
Extended: 3 command words plus 0-125 data words.

Normal commands have a smaller packet size and can be faster in some situations. Extended
commands provide more commands, better error detection, and a larger maximum data
payload.

Normal command format:

Byte
0 Checksum8: Includes bytes 1-15.
1 Command Byte: DCCCCWWW

Bit 7: Destination bit:
0 = Local,
1 = Remote.

Bits 6-3: Normal command number (0-14).
Bits 2-0: Number of data words.

2-15 Data words.

Extended command format:

Byte
0 Checksum8: Includes bytes 1-5.
1 Command Byte: D1111CCC

Bit 7: Destination bit:
0 = Local,
1 = Remote.

Bits 6-3: 1111 specifies that this is an extended command.
Bits 2-0: Used with some commands.

2 Number of data words.
3 Extended command number.
4 Checksum16 (LSB)
5 Checksum16 (MSB)

6-255 Data words.

Checksum calculations:

All checksums are a "1's complement checksum". Both the 8-bit and 16-bit checksum are
unsigned. Sum all applicable bytes in an accumulator, 1 at a time. Each time another byte is
added, check for overflow (carry bit), and if true add one to the accumulator.

In a high-level language, do the following for the 8-bit normal command checksum:

-Get the subarray consisting of bytes 1 and up.
-Convert bytes to U16 and sum into a U16 accumulator.
-Divide by 2^8 and sum the quotient and remainder.
-Divide by 2^8 and sum the quotient and remainder.

In a high-level language, do the following for an extended command 16-bit checksum:

-Get the subarray consisting of bytes 6 and up.
-Convert bytes to U16 and sum into a U16 accumulator (can't overflow).

Then do the following for the 8-bit extended checksum:

et the subarray consisting of bytes 1 through 5.

-G
-Convert bytes to U16 and sum into a U16 accumulator.
-Divide by 2^8 and sum the quotient and remainder.
-Divide by 2^8 and sum the quotient and remainder.

Destination bit:

his bit specifies whether the command is desT
ig

tined for the local or remote target. This bit is
nored on the U6.

Multi-byte parameters:

In the following function definitions there are various multi-byte parameters. The least
significant byte of the parameter will always be found at the lowest byte number. For instance,
bytes 10 through 13 of CommConfig are the IP address which is 4 bytes long. Byte 10 is the
least significant byte (LSB), and byte 13 is the most significant byte (MSB).

Masks:

Some functions have mask parameters. The WriteMask found in some functions specifies
which parameters are to be written. If a bit is 1, that parameter will be updated with the new
passed value. If a bit is 0, the parameter is not changed and only a read is performed.

The AINMask found in some functions specifies which analog inputs are acquired. This is a 16-
bit parameter where each bit corresponds to AIN0-AIN15. If a bit is 1, that channel will be
acquired.

The digital I/O masks, such as FIOMask, specify that the passed value for direction and state
are updated if a bit 1. If a bit of the mask is 0 only a read is performed on that bit of I/O.

 85

Binary Encoded Parameters:

re each bit of I/O corresponds to the same bit in the

 each of the 8 FIO lines:

es are input,
 is output, FIO1-FIO7 are input,

5 (20 + … + 27), FIO0-FIO7 are output.

Many parameters in the following functions use specific bits within a single integer parameter to
write/read specific information. In particular, most digital I/O parameters contain the information
or each bit of I/O in one integer, whef

parameter (e.g. the direction of FIO0 is set in bit 0 of parameter FIODir). For instance, in the
function ControlConfig, the parameter FIODir is a single byte (8 bits) that writes/reads the

irection ofd

• if FIODir is 0, all FIO lin
• if FIODir is 1 (20), FIO0
• if FIODir is 5 (20 + 22), FIO0 and FIO2 are output, all other FIO lines are input,
• if FIODir is 25

 86

5.2 Low-Level Functions

e normal response
5.2.1 BadChecksum
If the processor detects a bad checksum in any command, the following 2-byt
will be sent and nothing further will be done.

Response:

Byte
0 0xB8
1 0xB8

 87

5.2.2 ConfigU6

rites, which is plenty for reasonable operation, but if this

nc on Mask, the flash could eventually be
dam g

• WriteMask: Has bits that determine which, if any, of the parameters will be written to
flash as the reset defaults. If a bit is 1, that parameter will be updated with the new
passed value. If a bit is 0, the parameter is not changed and only a read is performed.

• LocalID: If the WriteMask bit 3 is set, the value passed become the default value,
meaning it is written to flash and used at reset. This is a user-configurable ID that can

Writes the Local ID, and reads some hardware information. The old U6 version of this function
used to write and read power-up defaults for many parameters, but that functionality has been
moved to new functions.

If WriteMask is nonzero, some or all default values are written to flash. The U6 flash has a
rated endurance of at least 20000 w
fu ti is called in a high-speed loop with a nonzero Write

a ed.

Command:

Byte

0 Checksum8
1 0xF8
2 0x0A
3 0x08
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 WriteMask0

Bit 3: LocalID
7 Reserved
8 LocalID

9-25 Reserved

Response:

Byte
0 Checksum8
1 0xF8
2 0x10
3 0x08
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 Reserved
8 Reserved

9-10 FirmwareVersion
11-12 BootloaderVersion
13-14 HardwareVersion
15-18 SerialNumber
19-20 ProductID

21 LocalID
22-36 Reserved

37 VersionInfo

 88

be used to identify a specific LabJack. The return value of this parameter is the current
ult value.

s the version number of the main firmware.
 will generally cause this parameter to change. The lower byte is the

f the version and the higher byte is the fractional
portion of the version.

• HardwareVersion: Fixed parameter specifies the version number of the hardware. The
lower byte is the integer portion of the version and the higher byte is the fractional
portion of the version.

• SerialNumber: Fixed parameter that is unique for every LabJack.
• ProductID: (6) Fixed parameter identifies this LabJack as a U6.
• VersionInfo: Bit 0 specifies U3B. Bit 1 specifies U3C and if set then bit 4 specifies -HV

version. Bit 2 species U6 and bit 3 specifies U6-Pro.

value and the power-up defa
• FirmwareVersion: Fixed parameter specifie

A firmware upgrade
integer portion of the version and the higher byte is the fractional portion of the version.

• BootloaderVersion: Fixed parameter specifies the version number of the bootloader.
The lower byte is the integer portion o

 89

5.2.3 ConfigIO
Writes and reads the current IO configuration.

Command:

Byte
0 Checksum8
1 0xF8
2 0

• WriteMask: Has a bit that determines if new timer/counter settings are written.
• NumberTimersEnabled: 0-4. Used to enable/disable timers. Timers will be assigned to

IO pins starting with FIO0 plus TimerCounterPinOffset. Timer0 takes the first IO pin,
then Timer1, and so on. Whenever this function is called and timers are enabled, the
timers are initialized to mode 10, so the desired timer mode must always be specified
after every call to this function.

• TimerCounterPinOffset: 0-8. Timers/counters are assigned terminals starting from here.

x05
3 0x0B
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 WriteMask

Bit 0: TimerCounterConfig
7 NumberTimersEnabled
8 CounterEnable

Bit 1: Enable Counter1
Bit 0: Enable Counter0

9 TimerCounterPinOffset
10-15 Reserved

Response:

Byte
0 Checksum8
1 0xF8
2 0x05
3 0x0B
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 Reserved
8 NumberTimersEnabled
9 CounterEnable
10 TCPinOffset

10-15 Reserved

 90

5.2.4
Writes

• TimerClockConfig: Bit 7 determines whether the new TimerClockBase and
TimerClockDivisor are written, or if just a read is performed. Bits 0-2 specify the
TimerClockBase. If TimerClockBase is 3-6, then Counter0 is not available.

• TimerClockDivisor: The base timer clock is divided by this value, or divided by 256 if this
value is 0. Only applies if TimerClockBase is 3-6.

 ConfigTimerClock
and read the timer clock configuration.

Command:

Byte
0 Checksum8

0xF8
0x02

1
2

4
5

Bits 2-0: TimerClockBase
b000: 4 MHz
b001: 12 MHz
b010: 48 MHz (Default)
b011: 1 MHz /Divisor
b100: 4 MHz /Divisor
b101: 12 MHz /Divisor
b110: 48 MHz /Divisor

9 TimerClockDivisor (0 = ÷256)

Response:

3 0x0A
Checksum16 (LSB)
Checksum16 (MSB)

6 Reserved
7 Reserved
8 TimerClockConfig

Bit 7: Configure the clock

Byte
0 Checksum8
1 0xF8
2 0x02
3 0x0A
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 Reserved
8 TimerClockConfig
9 TimerClockDivisor (0 = ÷256)

 91

5.2.5 Feedback
sponse functionality. One or more IOTypes are

used to perform a single write/read or multiple writes/reads.

Note that the general protocol described in Section 5.1 defines byte 2 of an extended command
as the number of data words, which is the number of words in a packet beyond the first 3 (a
word is 2 bytes). Also note that the overall size of a packet must be an even number of bytes,
so in this case an extra 0x00 is added to the end of the command and/or response if needed to
accomplish this.

Since this command has a flexible size, byte 2 will vary. For instance, if a single IOType of
PortStateRead (d26) is passed, byte 2 would be equal to 1 for the command and 3 for the
response. If a single IOType of LED (d9) is passed, an extra 0 must be added to the command
to make the packet have an even number of bytes, and byte 2 would be equal to 2. The
response would also need an extra 0 to be even, and byte 2 would be equal to 2.

•
o about the available IOTypes is below. In the outgoing

incoming response, only data bytes are returned without the IOTypes.
• Echo: This byte is simply echoed back in the response. A host application might pass

sequential numbers to ensure the responses are in order and associated with the proper
command.

A flexible function that handles all command/re

Command:

Byte
0 Checksum8
1 0xF8
2 0.5 + Number of Data Words (IOTypes and Data)
3 0x00
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Echo

7-63 IOTypes and Data

Response:

Byte
0 Checksum8
1 0xF8
2 1.5 + Number of Data Words (If Errorcode = 0)
3 0x00
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 ErrorFrame
8 Echo

9-63 Data

IOTypes & Data: One or more IOTypes can be passed in a single command, up to the
maximum packet size. More inf
command each IOType is passed and accompanied by 0 or more data bytes. In the

 92

• ErrorFrame: If Errorcode is not zero, this parameter indicates which IOType caused the
rd passed IOType caused the error, the ErrorFrame would be

eturned for IOTypes before the one that caused
on response will have less

bytes than expected.

error. For instance, if the 3
equal to 3. Also note that data is only r
the error, so if any IOType causes an error the overall functi

IOTypes for Feedback Command:

Name IOType (dec) WriteBytes ReadBytes
AIN 1 3 2

AIN24 2 4 3
AIN24AR 3 4 5
WaitShort 5 2 0
WaitLong 6 2 0

LED 9 2 0
BitStateRead 10 2 1
BitStateWrite 11 2 0
BitDirRead 12 2 1
BitDirWrite 13 2 0

PortStateRead 26 1 3
PortStateWrite 27 7 0
PortDirRead 28 1 3
PortDirWrite 29 7 0
DAC0 (8-bit) 34 2 0
DAC1 (8-bit) 35 2 0
DAC0 (16-bit) 38 3 0
DAC1 (16-bit) 39 3 0

Timer0 42 4 4
Timer0Config 43 4 0

Timer1 44 4 4
Timer1Config 45 4 0

Timer2 46 4 4
Timer2Config 47 4 0

Timer3 48 4 4
Timer3Config 49 4 0

Counter0 54 2 4
Counter1 55 2 4

 93

5.2.5.1 AIN: IOType=1

lity,

e, where the positive channel is an even

 value (always unsigned).

This IOType returns a single analog input reading. If using the autorange feature, the AIN24AR
IOType in the following Section should be used instead.

• PositiveChannel: 0-143 for AIN0-AIN143. 14 is the internal temperature sensor and 15
is internal GND.

• ResolutionIndex: 0=default, 1-8 for high-speed ADC, 9-13 for high-res ADC on U6-Pro.
• GainIndex: 0=x1, 1=x10, 2=x100, 3=x1000, 15=autorange.
• SettlingFactor: 0=5us, 1=10us, 2=100us, 3=1ms, 4=10ms.
• Differential: If this bit is set, a differential reading is done where the negative channel is

PositiveChannel+1.

AIN, 3 Command Bytes:

0 IOType=1
1 PositiveChannel

2 Reserved

2 Response Bytes:
0 AIN LSB
1 AIN MSB

This is the U3 style IOType to get a single analog input reading. It is available for compatibi
but to make full use of the U6 the new AIN24 IOType should be used.

• PositiveChannel: 0-143 for AIN0-AIN143. 14 is the internal temperature sensor and 15
is internal GND.

• NegativeChannel: 0, 15, or 199 signifies a single-ended reading. For differential
readings this should be positive channel plus on
number from 0-142.

• AIN LSB & MSB: Analog input reading is returned as a 16-bit

5.2.5.2 AIN24: IOType=2

AIN24, 4 Command Bytes:
0 IOType=2
1 PositiveChannel
2 Bits 0-3: ResolutionIndex

Bits 4-7: GainIndex
3 Bits 0-2: SettlingFactor

Bit 7: Differential

3 Response Bytes:
0 AIN LSB
1 AIN Bits 8-15
2 AIN MSB

• AIN bytes: Analog input reading is returned as a 24-bit value (always unsigned).

 94

5.2 3

AIN24A d Bytes:

.5. AIN24AR: IOType=3

R, 4 Comman
0
1 Pos
2 Bits
 Bits

3 Bits
 Bit 7: Differential

5 Response Bytes:

IOType=3
itiveChannel
 0-3: ResolutionIndex
 4-7: GainIndex
 0-2: SettlingFactor

0 AIN LSB
1 AIN Bits 8-15
2 AIN MSB
3 Bits 0-3: ResolutionIndex
 Bits 4-7: GainIndex

4 Status

This IOType returns a single analog input reading. Also returns the actual resolution and gain
used for the reading.

• PositiveChannel: 0-143 for AIN0-AIN143. 14 is the internal temperature sensor and 15
is internal GND.

• ResolutionIndex: 0=default, 1-8 for high-speed ADC, 9-13 for high-res ADC on U6-Pro.
Value in the response is the actual resolution setting used for the reading.

• GainIndex: 0=x1, 1=x10, 2=x100, 3=x1000, 15=autorange. Value in the response is the
actual gain setting used for the reading.

• SettlingFactor: 0=5us, 1=10us, 2=100us, 3=1ms, 4=10ms.
• Differential: If this bit is set, a differential reading is done where the negative channel is

PositiveChannel+1.
• AIN bytes: Analog input reading is returned as a 24-bit value (always unsigned).
• Status: Reserved for future use.

5.2.5.4 WaitShort: IOType=5

his IOType provides a way to add a delay during execution of the Feedback function. The
typical use would be putting this IOType in between IOTypes that set a digital output line high
and low, thus providing a simple way to create a pulse. Note that this IOType uses the same
internal timer as stream mode, so cannot be used while streaming.

• Time: This value (0-255) is multiplied by 128 microseconds to determine the delay.

WaitShort, 2 Command Bytes:
0 IOType=5
1 Time (*128 us)

0 Response Bytes:

T

 95

5.2.5.5 WaitLong: IOType=6

This IOType provides a way to add a delay during execution of the Feedback function. The
typical use would be putting this IOType in between IOTypes that set a digital output line high

nd low, thus providing a simple way to create a pulse. Note that this IOType uses the same
ternal timer as stream mode, so cannot be used while streaming.

rmine the delay.

=9

5.2.5.7 BitStateRead: IOType=10

• =Low.

WaitLong, 2 Command Bytes:
0 IOType=6
1 Time (*32 ms)

0 Response Bytes:

a
in

• Time: This value (0-255) is multiplied by 32 milliseconds to dete

 LED: IOType5.2.5.6

This IOType simply turns the status LED on or off.

• State: 1=On, 0=Off.

This IOType reads the state of a single bit of digital I/O. Only lines configured as digital (not
analog) return valid readings.

• IO Number: 0-7=FIO, 8-15=EIO, or 16-19=CIO.
State: 1=High, 0

LED, 2 Command Bytes:
0

ponse Bytes:

IOType=9
1 State

0 Res

BitStateRead, 2 Command Bytes:
0 IOType=10
1 Bits 0-4: IO Number

1 Response Byte:
0 Bit 0: State

 96

5.2.5.8 BitStateWrite: IOType=11

BitStateWrite, 2 Command Bytes:

0 IOT

This IOType writes the state of a single bit of digi l I/O. The direction of the specified line is
forced to output.

High, 0=Low

5.2.5.9 BitDirRead: IOTy e=12

O
doe

5.2 1

This IOType writes the direction of a single bit of digital I/O.

ype=11
 Number

0

1 Bits 0-4: IO
Bit 7: State

 Response Bytes:

ta

• IO Number: 0-7=FIO, 8-15=EIO, or 16-19=CIO.
• State: 1= .

p

BitDirRead, 2 Command Bytes:
0 IOType=12
1 Bits 0-4: IO Number

ponse Byte:1 Res
0 Bit 0: Direction

This I Type reads the direction of a single bit of digital I/O. This is the digital direction only, and

s not provide any information as to whether the line is configured as digital or analog.

• IO Number: 0-7=FIO, 8-15=EIO, or 16-19=CIO.
• Direction: 1=Output, 0=Input.

.5. 0 BitDirWrite: IOType=13

BitDirWrite, 2 Command Bytes:
0 IOType=13
1 Bits 0-4: IO Number

Bit 7: Direction

0 Response Bytes:

• IO Number: 0-7=FIO, 8-15=EIO, or 16-19=CIO.
• Direction: 1=Output, 0=Input.

 97

5.2.5.11 PortStateRead: IOType=26

his IOType reads the state of all digital I/O, where 0-7=FIO, 8-15=EIO, and 16-19=CIO. Only

d
are high, State=d1048575.

If FIO0-FIO2 are high, EIO0-EIO2 are high, CIO0 are high, and all other I/O are low

 IOType=27

-7=FIO, 8-15=EIO, and 16-19=CIO. The
irection of the selected lines is forced to output.

• WriteMask: Each bit specifies whether to update the corresponding bit of I/O.
• State: Each bit of this value corresponds to the specified bit of I/O such that 1=High and

 To set all 20 standard digital I/O high,
 high, EIO0-EIO2 high, CIO0 high, and all other I/O

Thi -7=FIO, 8-15=EIO, and 16-19=CIO.
The information as to whether the lines

re con

• Direction: Each bit of this value corresponds to the specified bit of I/O such that
1=Output and 0=Input. If all are input, Direction=d0. If all 20 standard digital I/O are
output, Direction=d1048575. If FIO0-FIO2 are output, EIO0-EIO2 are output, CIO0 are
output, and all other I/O are input (b000000010000011100000111), Direction=d67335.

PortStateRead, 1 Command Byte:
0 IOType=26

3 Response Bytes:
0-2 State

T
lines configured as digital (not analog) return valid readings.

• State: Each bit of this value corresponds to the specified bit of I/O such that 1=High an
0=Low. If all are low, State=d0. If all 20 standard digital I/O

(b000000010000011100000111), State=d67335.

5.2.5.12 PortStateWrite:

PortStateWrite, 7 Command Bytes:
0 IOType=27

1-3 WriteMask
4-6 State

0 Response Bytes:

This IOType writes the state of all digital I/O, where 0
d

0=Low. To set all low, State=d0.
State=d1048575. To set FIO0-FIO2
low (b000000010000011100000111), State=d67335.

5.2.5.13 PortDirRead: IOType=28

PortDirRead, 1 Command Byte:
0 IOType=28

3 Response Bytes:
0-2 Direction

s IOType reads the directions of all digital I/O, where 0
only, and do not provide any se are the digital directions

figured as digital or analog. a

 98

5.2.5.14 PortDirWrite: IOType=29

red lines must be configured as digital (not analog).

onding bit of I/O.
is value corresponds to the specified bit of I/O such that

1=Output and 0=Input. To configure all as input, Direction=d0. For all 20 standard
digital I/O as output, Direction=d1048575. To configure FIO0-FIO2 as output, EIO0-

35.

his IOType controls a single analog output.

um.

8,39

PortDirWrite

, 7 Command Bytes:
0 IOType=29

1-3 WriteMask
4-6 Direction

ponse Bytes:

0 Res

This IOType writes the direction of all digital I/O, where 0-7=FIO, 8-15=EIO, and 16-19=CIO.
Note that the desi

• WriteMask: Each bit specifies whether to update the corresp
• Direction: Each bit of th

EIO2 as output, CIO0 as outpu
(b000000010000011100000111), Direction=d673

t, and all other I/O as input

5.2.5.15 DAC# (8-bit): IOType=34,35

DAC# (8-bit), 2 Command Bytes:
0 IOType=34,35
1 Value

0 Response Bytes:

T

• Value: 0=Minimum, 255=Maxim

5.2.5.16 DAC# (16-bit): IOType=3

DAC# (16-bit), 3 Command Bytes:

0 IOType=38,39
1 Value LSB
2 Value MSB

0 Response Bytes:

This IOType controls a single analog output.

• Value: 0=Minimum, 65535=Maximum.

 99

5.2.5.17 Timer#: IOType=42,44,46,48

• Value: These values are only updated if the UpdateReset bit is 1. The meaning of this

parameter varies with the timer mode.
mer module. This is the value before reset (if reset

hi

•

.2.5.19 Counter#: IOType=54,55

re

Timer#, 4 Command Bytes:
0 IOType=42,44,46,48
1 Bit 0: UpdateReset
2 Value LSB
3 Value MSB

4 Response Bytes:
0 Timer LSB
1 Timer
2 Timer
3 Timer MSB

This IOType provides the ability to update/reset a given timer, and read the timer value.

• Timer: Returns the value from the ti
was done).

5.2.5.18 Timer#Config: IOType=43,45,47,49

T s IOType configures a particular timer.

• TimerMode: See Section 2.9 for more information about the available modes.
Value: The meaning of this parameter varies with the timer mode.

5

This IOType reads a hardware counter, and optionally can do a reset.

• Reset: Setting this bit resets the counter to 0 after reading.
• Counter: Returns the current count from the counter if enabled. This is the value befo

reset (if reset was done).

Counter#, 2 Command Bytes:
0 IOType=54,55
1 Bit 0: Reset

4 Response Bytes:
0 Counter LSB
1 Counter
2 Counter

Timer#Config, 4 Command Bytes:
0 IOType=43,45,47,49
1 TimerMode
2 Value LSB
3 Value MSB

0 Response Bytes:

3 Counter MSB

 100

5.2.6
eads 1 block (32 bytes) from the non-volatile user or calibration memory. Command number

ich consists of 256 bytes (block numbers 0-7).
libration memory area which consists of 96 bytes

(block numbers 0-2). Do not call this function while streaming.

ReadMem (ReadCal)
R
0x2A accesses the user memory area wh
Command number 0x2D accesses the ca

Command:

Byte
0 Checksum8
1 0xF8
2 0x01
3 0x2A (0x2D)
4 Checksum16 (LSB)
5 Checksum16 (MSB)

6 0x00

Respon

7 BlockNum

se:

Byte
0
1 0xF8
2 0x11

5 Checksum16 (MSB)
6 Errorcode
7 0x00

8-39 32 Bytes of Data

Checksum8

3 0x2A (0x2D)
4 Checksum16 (LSB)

 101

5.2.7 WriteMem (WriteCal)
Writes 1 block (32 bytes) to the non-volatile user or calibration memory. Command number
0x28 accesses the user memory area which consists of 256 bytes (block numbers 0-7).
Command number 0x2B accesses the calibration memory area which consists of 96 bytes
(block numbers 0-2). Memory must be erased before writing. Do not call this function while
streaming.

Command:

Byte
0 Checksum8
1 0xF8
2 0x11
3 0x28 (0x2B)
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 0x00

BlockNum7

ponse:

8-39 32 Bytes of Data

Res

Byte
0 Checksum8
1 0xF8
2 0x01
3 0x28 (0x2B)
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 0x00

 102

5.2.8)
The U6 uses flash memory that must be erased before writing. Command number 0x29 erases
the entire user memory area. Command number 0x2C erases the entire calibration memory
area. The EraseCal command has two extra constant bytes, to make it more difficult to call the
function accidentally. Do not call this function while streaming.

 EraseMem (EraseCal

Command:

Byte
0 Checksum8
1 0xF8
2 0x00 (0x01)
3 0x29 (0x2C)
4 Checksum16 (LSB)
5 Checksum16 (MSB)

(6) (0x4C)
(7) (0x6C)

Response:

Byte
0 Checksum8
1 0xF8
2 0x01
3 0x29 (0x2C)
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 0x00

 103

5.2.9 SetDefaults (SetToFactoryDefaults)

ch is plenty for reasonable
operation, but if this function is called in a high-speed loop the flash could eventually be
damaged.

Executing this function causes the current or last used values (or the factory defaults) to be
stored in flash as the power-up defaults.

The U6 flash has a rated endurance of at least 20000 writes, whi

Command:

Byte
0 Checksum8
1 0xF8
2 0x01
3 0x0E
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 0xBA (0x82)
7 0x26 (0xC7)

Response:

Byte
0 Checksum8
1 0xF8
2 0x01
3 0x0E
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 0x00

 104

5.2.10 ReadDefaults
Reads the power-up defaults from flash.

Command:

Byte
0 Checksum8

1 0xF8
2 0x01
3 0x0E
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 0x00
7 BlockNum (0-7)

Response:

Byte
0 Checksum8
1 0xF8
2 0x11
3 0x0E
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 0x00

8-39 Data

Power-Up Defaults Address Map

k #

Byte # Name FactoryBloc
0 4 FIODirection 0

IOState 0
0 8 EIODirection 0
0 9 EIOState 0
0 12 CIODirection 0
0 13 CIOState 0

… YTBD

0 5 F

 105

5.2.11 Reset
Causes a soft or hard reset. A soft reset consists of re-initializing most variables without re-
enumeration. A hard reset is a reboot of the processor and does cause re-enumeration.

Command:

Byte
0 Checksum8
1 0x99
2 ResetOptions

Bit 1: Hard Reset
Bit 0: Soft Reset

3 0x00

Response:

Byte
0 Checksum8
1 0x99
2 0x00
3 Errorcode

 106

5.2.12 StreamConfig
Stream mode operates on a table of channels that are scanned at the specified scan rate.
Before starting a stream, you need to call this function to configure the table and scan clock.

• NumChannels: This is the number of channels you will sample per scan (1-25).
• SamplesPerPacket: Specifies how many samples will be pulled out of the U6 FIFO

buffer and returned per data read packet. For faster stream speeds, 25 samples per
packet are required for data transfer efficiency. A small number of samples per packet
would be desirable for low-latency data retrieval. Note that this parameter is not
necessarily the same as the number of channels per scan. Even if only 1 channel is

Command:

Byte
0 Checksum8

b0: 4 MHz
b1: 48 MHz

Bit 1: Divide Clock by 256
12-13 Scan Interval (1-65535)

14 ChannelNumber (Positive)
15 ChannelOptions

Bit 7: Differential
Bits 5-4: GainIndex

Repeat 14-15 for each channel

ponse:

1 0xF8
2 NumChannels + 4
3 0x11
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 NumChannels
7 ResolutionIndex
8 SamplesPerPacket (1-25)
9 Reserved
10 SettlingFactor
11 ScanConfig

Bit 3: Internal stream clock frequency.

Res

Byte
0 Checksum8
1 0xF8
2 0x01
3 0x11
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 0x00

 107

being scanned, SamplesPerPacket will usually be set to 25, so there are usually multiple

e stream clock.
ivided by the clock frequency defined in the

ScanConfig parameter, gives the interval (in seconds) between scans.
• ChannelNumber: This is the positive channel number. 0-143 for analog input channels

or 193-224 for digital/timer/counter channels.
• ChannelOptions: If bit 7 is set, a differential reading is done rather than single-ended.

Bits 4-5 specify the gain:

scans per packet.
• ScanConfig: Has bits to specify th
• ScanInterval: (1-65535) This value d

GainIndex Gain Max V Min V
Bipolar b00 (d0) 1 10.1 -10.6
Bipolar b01 (d1) 10 1.01 -1.06
Bipolar b10 (d2) 100 0.101 -0.106
Bipolar b11 (d3) 1000 0.0101 -0.0106

 108

5.2.13 StreamStart

Once the stream settings are configured, this function is called to start the stream.

Command:

Byte
0 0xA8
1 0xA8

Response:

Byte
0 Checksum8
1 0xA9
2 Errorcode
3 0x00

 109

5.2.14 StreamData
After starting the stream, the data will be sent as available in the following format. Reads old
data from buffer.

est

• SamplesPerPacket: From StreamConfig function.
• TimeStamp: Not currently implemented during normal operation, but after auto-recovery

this reports the number of packets missed (1-65535).
• PacketCounter: An 8-bit (0-255) counter that is incremented by one for each packet of

data. Useful to make sure packets are in order and no packets are missing.
• Sample#: Stream data is placed in a FIFO (first in first out) buffer, so Sample0 is the

oldest data read from the buffer. The analog input reading is returned justified as a 16-
bit value. Differential readings are signed, while single-ended readings are unsigned.

• Backlog: When streaming, the processor acquires data at precise intervals, and
transfers it to a FIFO buffer until it can be sent to the host. This value represents how
much data is left in the buffer after this read. The value ranges from 0-255, where 256
would equal 100% full.

Stream mode on the U6 uses a feature called auto-recovery. If the stream buffer gets too full,
the U6 will go into auto-recovery mode. In this mode, the U6 no longer stores new scans in the
buffer, but rather new scans are discarded. Data already in the buffer will be sent until the
buffer contains less samples than SamplesPerPacket, and every StreamData packet will have
errorcode 59. Once the stream buffer contains less samples than SamplesPerPacket, the U6
will start to buffer new scans again. The next packet returned will have errorcode 60. This
packet will have 1 dummy scan where each sample is 0xFFFF, and this scan separates new
data from any pre auto-recovery data. Note that the dummy scan could be at the beginning,
middle, or end of this packet, and can even extend to following packets. Also, the TimeStamp

arameter in this packet contains the number of scans that were discarded, allowing correct
me to be calculated. The dummy scan counts as one of the missing scans included in the
imeStamp value.

Response:

Byte
0 Checksum8
1 0xF9
2 4 + SamplesPerPacket
3 0xC0
4 Checksum16 (LSB)
5 Checksum16 (MSB)

6-9 TimeStamp
10 PacketCounter
11 Errorcode

12-13 Sample0
62 (max) Backlog
63 (max) 0x00

p
ti
T

 110

 111

5.2.15

a

 StreamStop

Comm nd:

Byte

0

Response:

0xB0
1 0xB0

Byte
0 Checksum8
1 0xB1
2 Errorcode
3 0x00

5.2.16 Watchdog
Controls a firmware based watchdog timer. Unattended systems requiring maximum up-time
might use this capability to reset the U6 or the entire system. When any of the options are

nabled, an internal timer is enabled which resets on any incoming USB communication. If this
timer reaches the defined TimeoutPeriod before being reset, the specified actions will occur.
Note that while streaming, data is only going out, so some other command will have to be called
periodically to reset the watchdog timer.

If the watchdog is accidentally configured to reset the processor with a very low timeout period
(such as 1 second), it could be difficult to establish any communication with the device. In such

 case, the reset-to-default jumper can be used to turn off the watchdog (sets bytes 7-10 to 0).
Power up the U6 with a short from FIO2 to SPC (or VSPC), then remove the jumper and power
cycle the device again. This also affects the parameters in the DefaultConfig?? function.

The watchdog settings (bytes 7-10) are stored in non-volatile flash memory, so every call to this
function where settings are written causes a flash erase/write. The flash has a rated endurance
of at least 20000 writes, which is plenty for reasonable operation, but if this function is called in
a high-speed loop the flash could be damaged.

e

a

Command:

Byte
0 Checksum8
1 0xF8
2 0x05
3 0x09
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 WriteMask

Bit 0: Write
7 WatchdogOptions

Bit 5: Reset on Timeout
Bit 4: Set DIO State on Timeout

8-9 TimeoutPeriod
10 DIOConfig

Bit 7: State
Bit 0-4: DIO#

11 Reserved
12 Reserved
13 Reserved
14 Reserved
15 Reserved

 112

Response:

Byte
0 Checksum8
1 0xF8

• WatchdogOptions: The watchdog is enabled when this byte is nonzero. Set the
appropriate bits to reset the device and/or update the state of 1 digital output.

• TimeoutPeriod: The watchdog timer is reset to zero on any incoming USB
f a write and read, but StreamData is

s

2 0x05
3 0x09
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 WatchdogOptions

8-9 TimeoutPeriod
10 DIOConfig
11 Reserved
12 Reserved
13 Reserved
14 Reserved
15 Reserved

communication. Note that most functions consist o
outgoing only and does not reset the watchdog. If the watchdog timer is not reset before
it counts up to TimeoutPeriod, the actions specified by WatchdogOptions will occur. The
watchdog timer has a clock rate of about 1 Hz, so a TimeoutPeriod range of 1-65535
corresponds to about 1 to 65535 seconds.

• DIOConfig: Determines which digital I/O is affected by the watchdog, and the state it i
set to. The specified DIO must have previously been configured for output. DIO# is a
value from 0-19 according to the following:

0-7 FIO0-FIO7
8-15 EIO0-EIO7
16-19 CIO0-CIO3

 113

5.2.17 SPI
Sends and receives serial data using SPI synchronous communication.

• NumSPIWords: This is the number of SPI bytes divided by 2. If the number of SPI
bytes is odd, round up and add an extra zero to the packet.

• SPIOptions: If AutoCS is true, the CS line is automatically driven low during the SPI
communication and brought back high when done. If DisableDirConfig is true, this
function does not set the direction of the lines, whereas if it is false the lines are
configured as CS=output, CLK=output, MISO=input, and MOSI=output. SPIMode
specifies the standard SPI mode as discussed below.

• SPIClockFactor: Sets the frequency of the SPI clock according the following
approximate formula: Frequency = 1000000/(10+10*(256-SPIClockFactor), where
passing a value of 0 corresponds to a factor of 256, and thus a maximum frequency of
about 100 kHz.

Command:

Byte
0 Checksum8
1 0xF8
2 4 + NumSPIWords
3 0x3A
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 SPIOptions

Bit 7: AutoCS
Bit 6: DisableDirConfig
Bits 1-0: SPIMode (0=A, 1=B, 2=C, 3=D)

7 SPIClockFactor
8 Reserved
9 CSPinNum
10 CLKPinNum
11 MISOPinNum
12 MOSIPinNum
13 NumSPIBytesToTransfer
14 SPIByte0
… …

Response:

Byte
0 Checksum8
1 0xF8
2 1 + NumSPIWords
3 0x3A
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 NumSPIBytesTransferred
8 SPIByte0
… …

 114

• CS/CLK/MISO/MOSI -PinNum: Assigns which digital I/O line is used for each SPI line.
 0-19 corresponding to the normal digital I/O numbers as specified in

andled manually, outside of this function, care must be taken to make sure SCK is initially set

Mode B: CPHA=1, CPOL=0

ity (CPOL) determines the idle state of SCK.

Up to 50 bytes can be written/read. Communication is full duplex so 1 byte is read at the same
time each byte is written.

Value passed is
Section 2.8.

• NumSPIBytesToTransfer: Specifies how many SPI bytes will be transferred (1-50).

The initial state of SCK is set properly (CPOL), by this function, before CS (chip select) is
brought low (final state is also set properly before CS is brought high again). If CS is being
h
to CPOL before asserting CS.

All standard SPI modes supported (A, B, C, and D).

Mode A: CPHA=1, CPOL=1

Mode C: CPHA=0, CPOL=1
Mode D: CPHA=0, CPOL=0

If Clock Phase (CPHA) is 1, data is valid on the edge going to CPOL. If CPHA is 0, data is valid

n the edge going away from CPOL. Clock Polaro

 115

5.2.18 AsynchConfig
Configures the U6 UART for asynchronous communication. The TX (transmit) and RX (receive)
lines appear on FIO/EIO after any timers and counters, so with no timers/counters enabled, and
pin offset set to 0, TX=FIO0 and RX=FIO1. Communication is in the common 8/n/1 format.
Similar to RS232, except that the logic is normal CMOS/TTL. Connection to an RS232 device
will require a converter chip such as the MAX233, which inverts the logic and shifts the voltage
levels.

• AsynchOptions: If Update is true, the new parameters are written (otherwise just a read
is done). If UARTEnable is true, the UART is enabled and the RX line will start buffering
any incoming bytes.

• BaudFactor16 (BaudFactor8): This 16-bit value sets the baud rate according the
following formula: BaudFactor16 = 2^16 - 48000000/(2 * Desired Baud). For example, a
BaudFactor16 = 63036 provides a baud rate of 9600 bps. (With hardware revision 1.21,
the value is only 8-bit and the formula is BaudFactor8 = 2^8 – TimerClockBase/(Desired
Baud)).

AsynchConfig

Command:

Byte
0 Checksum8
1 0xF8
2 0x02
3 0x14
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 0x00

AsynchOptions7
Bit 7: Update
Bit 6: UARTEnable
Bit 5: Reserved

8) BaudFactor16 (BaudFactor8 for hardware 1.21)

se:

8-9 (

Respon

Byte
0
1 0xF8
2
3
4)
5 Checksum16 (MSB)
6 Errorcode
7 AsynchOptions

8-9 (8) BaudFactor16 (BaudFactor8 for hardware 1.21)

Checksum8

0x02
0x14
Checksum16 (LSB

 116

5.2.19 AsynchTX
nsmit line.

ber of asynch data bytes divided by 2. If the number
n extra zero to the packet.

 many bytes will be sent (0-56).
Buffer: Returns how many bytes are currently in the RX buffer.

Sends bytes to the U6 UART which will be sent asynchronously on the tra

Command:

Byte
0 Checksum8
1 0xF8
2 1 + NumAsynchWords
3 0x15
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 0x00
7 NumAsynchBytesToSend
8 AsynchByte0
… …

Response:

Byte
0 Checksum8
1 0xF8
2 0x02
3 0x15
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 NumAsynchBytesSent
8 NumAsynchBytesInRXBuffer
9 0x00

• NumAsynchWords: This is the num
of bytes is odd, round up and add a

• NumAsynchBytesToSend: Specifies how
• NumAsynchBytesInRX

 117

5.2.20
Rea
buffer h

• Flush: If nonzero, the entire 256-byte RX buffer is emptied. If there are more than 32
bytes in the buffer that data is lost.

• NumAsynchBytesInRXBuffer: Returns the number of bytes in the buffer before this
read.

• AsynchByte#: Returns the 32 oldest bytes from the RX buffer.

a

 AsynchRX
ds the oldest 32 bytes from the U6 UART RX buffer (received on receive terminal). The

olds 256 bytes.

Comm nd:

Byte
0 Checksum8
1 0xF8
2 0x01
3 0x16

4 Checksum16 (LSB)

6 0x00
7

Respon

5 Checksum16 (MSB)

Flush

se:

Byte
0 Checksum8
1 0xF8
2 0x11

5 Checksum16 (MSB)
6 Errorcode
7 NumAsynchBytesInRXBuffer
8 AsynchByte0
… …
39 AsynchByte31

3 0x16
4 Checksum16 (LSB)

 118

5.2.21 I2C
Sends and receives serial data using I2C (I2C) synchronous communication.

Command:

Byte
0

•

ually specifies how many bytes will be sent.
• I2COptions: If ResetAtStart is true, an I2C bus reset will be done before communicating.

Checksum8
1 0xF8
2 4+NumI2CWordsSend
3 0x3B
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 I2COptions

Bits 7-5: Reserved
Bit 4: Enable clock stretching.
Bit 2: No stop when restarting.
Bit 1: ResetAtStart
Bit 0: Reserved

7 SpeedAdjust
8 SDAPinNum
9 SCLPinNum
10 AddressByte
11 Reserved
12 NumI2CBytesToSend
13 NumI2CBytesToReceive
14 I2CByte0
… …

Response:

Byte
0 Checksum8
1 0xF8
2 3+NumI2CWordsReceive
3 0x3B
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 Reserved
8 AckArray0
9 AckArray1

10 AckArray2

…

11 AckArray3
12 I2CByte0

…

NumI2CWordsSend: This is the number of I2C bytes to send divided by 2. If the
number of bytes is odd, round up and add an extra zero to the packet. This parameter is
actually just to specify the size of this packet, as the NumI2CbytesToSend parameter
below act

 119

• SpeedAdjust: Allows the communication frequency to be reduced. 0 is the maximum
50 kHz. 20 is a speed of about 70 kHz. 255 is the minimum speed of

passed is 0-19 corresponding to the normal digital I/O numbers as specified in Section
2.8. Note that the screw terminals labeled “SDA” and “SCL” on hardware revision 1.20
or 1.21 are not used for I2C. Note that the I2C bus generally requires pull-up resistors of
perhaps 4.7 kΩ from SDA to Vs and SCL to Vs.

• AddressByte: This is the first byte of data sent on the I2C bus. The upper 7 bits are the
address of the slave chip and bit 0 is the read/write bit. Note that the read/write bit is
controlled automatically by the LabJack, and thus bit 0 is ignored.

• NumI2CBytesToSend: Specifies how many I2C bytes will be sent (0-50).
• NumI2CBytesToReceive: Specifies how many I2C bytes will be read (0-52).
• I2Cbyte#: In the command, these are the bytes to send. In the response, these are the

bytes read.
• NumI2CWordsReceive: This is the number of I2C bytes to receive divided by 2. If the

number of bytes is odd, the value is rounded up and an extra zero is added to the
packet. This parameter is actually just to specify the size of this packet, as the
NumI2CbytesToReceive parameter above actually specifies how many bytes to read.

• AckArray#: Represents a 32-bit value where bits are set if the corresponding I2C write
byte was ack’ed. Useful for debugging up to the first 32 write bytes of communication.
Bit 0 corresponds to the last data byte, bit 1 corresponds to the second to last data byte,
and so on up to the address byte. So if n is the number of data bytes, the ACKs value
should be (2^(n+1))-1.

speed of about 1
about 10 kHz.

• SDAP/SCLP -PinNum: Assigns which digital I/O line is used for each I2C line. Value

 120

5.2.22 SHT1X
Reads temperature and humidity from a Sensirion SHT1X sensor (which is used by the EI-
1050). For more information, see the EI-1050 datasheet from labjack.com, and the SHT1X
datasheet from sensirion.com.

passed is 0-7 corresponding to FIO0-FIO7. State and direction are controlled
automatically for the specified lines.

• StatusReg: Returns a read of the SHT1X status register.
• Temperature: Returns the raw binary temperature reading.
• Humidity: Returns the raw binary humidity reading.
• #CRC: Returns the CRC values from the sensor.

Command:

Byte
0 Checksum8
1 0xF8
2 0x02
3 0x39
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 DataPinNum (0-19)
7 ClockPinNum (0-19)
8 Reserved
9 Reserved

Response:

Byte
0 Checksum8
1 0xF8
2 0x05
3 0x39
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 0x00
8 StatusReg
9 StatusRegCRC

10-11 Temperature
12 TemperatureCRC

1 1
15
3- 4 Humidity

HumidityCRC

• Data/Clock -PinNum: Assigns which digital I/O line is used for each SPI line. Value

 121

5.3 Errorcodes

Following is a list of the low-level function errorcodes.

Code
1 SCRATCH_WRT_FAIL
2 SCRATCH_ERASE_FAIL
3 DATA_BUFFER_OVERFLOW
4 ADC0_BUFFER_OVERFLOW
5 FUNCTION_INVALID
6 SWDT_TIME_INVALID
7 XBR_CONFIG_ERROR
16 FLASH_WRITE_FAIL
17 FLASH_ERASE_FAIL
18 FLASH_JMP_FAIL
19 FLASH_PSP_TIMEOUT
20 FLASH_ABORT_RECEIVED
21 FLASH_PAGE_MISMATCH
22 FLASH_BLOCK_MISMATCH
23 FLASH_PAGE_NOT_IN_CODE_AREA
24 MEM_ILLEGAL_ADDRESS
25 FLASH_LOCKED
26 INVALID_BLOCK
27 FLASH_ILLEGAL_PAGE
28 FLASH_TOO_MANY_BYTES
29 FLASH_INVALID_STRING_NUM
40 SHT1x_COMM_TIME_OUT
41 SHT1x_NO_ACK
42 SHT1x_CRC_FAILED
43 SHT1X_TOO_MANY_W_BYTES
44 SHT1X_TOO_MANY_R_BYTES
45 SHT1X_INVALID_MODE
46 SHT1X_INVALID_LINE
48 STREAM_IS_ACTIVE
49 STREAM_TABLE_INVALID
50 STREAM_CONFIG_INVALID
51 STREAM_BAD_TRIGGER_SOURCE
52 STREAM_NOT_RUNNING
53 STREAM_INVALID_TRIGGER
54 STREAM_ADC0_BUFFER_OVERFLOW
55 STREAM_SCAN_OVERLAP
56 STREAM_SAMPLE_NUM_INVALID
57 STREAM_BIPOLAR_GAIN_INVALID
58 STREAM_SCAN_RATE_INVALID
59 STREAM_AUTORECOVER_ACTIVE
60 STREAM_AUTORECOVER_REPORT
63 STREAM_AUTORECOVER_OVERFLOW

 122

 123

Err

orcodes (Continued):

eCod
64 TIMER_INVALID_MODE

TIMER_QUADRATURE_AB_ERROR
TIMER_QUAD_PULSE_SEQUENCE
TIMER_BAD_CLOCK_SOURCE
TIMER_STREAM_ACTIVE

65
66
67
68

71

96 PIN

98
99

100
1

102

69 TIMER_PWMSTOP_MODULE_ERROR
70 TIMER_SEQUENCE_ERROR

TIMER_LINE_SEQUENCE_ERROR
72 TIMER_SHARING_ERROR
80 EXT_OSC_NOT_STABLE
81 INVALID_POWER_SETTING
82 PLL_NOT_LOCKED

INVALID_
97 PIN_CONFIGURED_FOR_ANALOG

PIN_CONFIGURED_FOR_DIGITAL
IOTYPE_SYNCH_ERROR
INVALID_OFFSET

10 IOTYPE_NOT_VALID
TC_PIN_OFFSET_MUST_BE_4-8

A. Specifications

Specifications at 25 degrees C and Vusb/Vext = 5.0V, except where noted.

Parameter Conditions Min Typical Max Units
General
USB Cable Length 5 meters
Supply Voltage 4.75 5.0 5.25 volts
Supply Current (1) 100 mA
Operating Temperature -40 85 °C
Clock Error ~ 25 °C ±30 ppm

-10 to 60 °C ±50 ppm
-40 to 85 °C ±100 ppm

Typ. Command Execution Time (2) USB high-high 0.6 ms
USB other 4 ms

Vs Outputs
Typical Voltage (3) Self-Powered 4.75 5.0 5.25 volts

Bus-Powered 4.8 5.0 5.25
Maximum Current (3) Self-Powered 400 mA

Bus-Powered 0 mA
Vm+/Vm- Outputs
Typical Voltage No-load ±13 volts

@ 2.5 mA ±12 volts
Maximum Current 2.5 mA
10UA & 200UA Current Outputs
Absolute Accuracy (4) ~ 25 °C ±0.1 ±0.2 %
Temperature Coefficient See Section 2.5 ppm/°C
Maximum Voltage VS - 2.0 volts

(4) This is compared to the value stored during factory calibration.

(1) Typical current drawn by the U6 itself, not including any user connections.

(3) These specifications are related to the power provided by the host/hub. Self- and bus-powered describes the host/hub, not
the U6. Self-powered would apply to USB hubs with a power supply, all known desktop computer USB hosts, and some
notebook computer USB hosts. An example of bus-powered would be a hub with no power supply, or many PDA ports. The
urrent rating is the maximum current that should be sourced through the U6 and out of the Vs terminals.

(2) Total typical time to execute a single Feedback function with no analog inputs. Measured by timing a Windows application
that performs 1000 calls to the Feedback function. See Section 3.1 for more timing information.

c

 124

Parameter Conditions Min Typical Max Units
Analog Inputs
Typical Input Range (1) Gain=1
Max AIN Voltage to GND (2) Valid Readings

-10.5 10.1 volts
-11.8 11.3 volts

Max AIN Voltage to GND (3) No Damage YTBD YTBD volts
Input Bias Current (4) 20 nA
Input Impedance (4) 1 GΩ
Source Impedance (4) 1 kΩ

Integral Linearity Error ±YTBD % FS
Differential Linearity Error ±YTBD counts
Absolute Accuracy Gain=1,10,100 ±0.01 % FS

Gain=1000 ±YTBD % FS

Temperature Drift YTBD ppm/°C
Noise (Peak-To-Peak) (5) See Appendix B

Effective Resolution (RMS) (6) Gain=1 16-22 bits
Noise-Free Resolution (5) bits

mV

Command/Response Speed See Section 3.1
Stream Performance See Section 3.2

(1) Differential or single-ended.

(5) Measurements taken with AIN connected to a 2.048 reference (REF191 from Analog Devices) or GND. All "counts" data
are aligned as 12-bit values. Noise-free data is determined by taking 128 readings and subtracting the minimum value from the
maximum value.
(6) Effective (RMS) data is determined from the standard deviation of 128 readings. In other words, this data represents most
readings, whereas noise-free data represents all readings.

(2) This is the maximum voltage on any AIN pin compared to ground for valid measurements. Single-ended inputs are limited
by the input range above, but these numbers apply to differential inputs.
(3) Maximum voltage, compared to ground, to avoid damage to the device. Protection level is the same whether the device is
powered or not.

(4) The low-voltage analog inputs essentially connect directly to a SAR ADC on the U3, presenting a capacitive load to the
signal source. The high-voltage inputs connect first to a resistive level-shifter/divider. The key specification in both cases is the
maximum source impedance. As long as the source impedance is not over this value, there will be no substantial errors due to
impedance problems.

 125

Parameter Conditions Min Typical Max Units
Analog Outputs (DAC)
Nominal Output Range (1) No Load 0.04 4.95 volts

@ ±2.5 mA 0.225 4.775 volts
Resolution 12 bits
Absolute Accuracy 5% to 95% FS ±0.1 % FS
Integral Linearity Error ±YTBD counts
Differential Linearity Error ±YTBD counts
Error Due To Loading @ 100 μA 0.1 %

@ 1 mA 1 %
Source Impedance 50 Ω
Short Circuit Current (2) Max to GND YTBD mA
Slew Rate YTBD V/ms
Digital I/O, Timers, Counters
Low Level Input Voltage -0.3 0.8 volts
High Level Input Voltage 2 5.8 volts
Maximum Input Voltage (3) FIO -10 10 volts

EIO/CIO -6 6 volts
Output Low Voltage (4) No Load 0 volts
 FIO Sinking 1 mA 0.55 volts
 EIO/CIO Sinking 1 mA 0.18 volts
 EIO/CIO Sinking 5 mA 0.9 volts
O

utput High Voltage (4) No Load 3.3 volts
IO Sourcing 1 mA 2.75 volts

/CIO Sourcing 1 mA 3.12 volts
 EIO/CIO Sourcing 5 mA 2.4 volts
Short Circuit Current (4) FIO 6 mA

EIO/CIO 18 mA
Output Impedance (4) FIO 550 Ω

EIO/CIO 180 Ω
Counter Input Frequency (5) 8 MHz
Input Timer Total Edge Rate (6) No Stream 30000 edges/s

While Streaming 7000 edges/s

(2) Continuous short circuit will not cause damage.

(5) Hardware counters. 0 to 3.3 volt square wave. Limit about 2 MHz with older hardware versions.

(1) Maximum and minimum analog output voltage is limited by the supply voltages (Vs and GND). The specifications
assume Vs is 5.0 volts. Also, the ability of the DAC output buffer to drive voltages close to the power rails, decreases with
increasing output current, but in most applications the output is not sinking/sourcing much current as the output voltage
approaches GND.

(3) Maximum voltage to avoid damage to the device. Protection works whether the device is powered or not, but continuous
voltages over 5.8 volts or less than -0.3 volts are not recommened when the U3 is unpowered, as the voltage will attempt to
supply operating power to the U3 possibly causing poor start-up behavior.

(6) To avoid missing edges, keep the total number of applicable edges on all applicable timers below this limit. See Section
2.9 for more information. Limit about 10000 with older hardware versions.

(4) These specifications provide the answer to the question: "How much current can the digital I/O sink or source?". For
instance, if EIO0 is configured as output-high and shorted to ground, the current sourced by EIO0 into ground will be about 18
mA (3.3/180). If connected to a load that draws 5 mA, EIO0 can provide that current but the voltage will droop to about 2.4
volts instead of the nominal 3.3 volts. If connected to a 180 ohm load to ground, the resulting voltage and current will be
about 1.65 volts @ 9 mA.

 F
 EIO

 126

B. Noise & Resolution Tables
ons. The resulting

voltage resolution is then calculated based on the noise levels.

Measurements were taken with AIN0 connected to GND with a short jumper wire, or from
internal ground channel #15.

All "counts" data are aligned as 24-bit values. To equate to counts at a particular resolution
(Res) use the formula counts/(2^(24-Res)). For instance, with the U6 set to resolution=1 and
the ±10 volt range, there are 1024 counts of noise when looking at 24-bit values. To equate
this to 16-bit data, we take 1024/(2^8) which equals 4 counts of noise when looking at 16-bit
values.

Noise-free data is determined by taking 128 readings and subtracting the minimum value from
the maximum value.

RMS and Effective data are determined from the standard deviation of 128 readings. In other
words, the RMS data represents most readings, whereas noise-free data represents all
readings.

olution Index = 3
Peak-To-Peak Noise-Free Noise-Free RMS Effective Effective

Range Noise Resolution Resolution Noise Resolution Resolution
volts 24-bit counts bits μV counts bits μV
±10 640 14.7 790.0 138 16.9 170.0
±1 1024 14.0 126.0 185 16.5 23.0

±0.1 3136 12.4 39.0 588 14.8 7.2
±0.01 10309 10.7 13.0 2118 13.0 2.6

The following tables provide typical noise levels of the U6 under ideal conditi

Resolution Index = 1
Peak-To-Peak Noise-Free Noise-Free RMS Effective Effective

Range Noise Resolution Resolution Noise Resolution Resolution
volts 24-bit counts bits μV counts bits μV
±10 1024 14.0 1300.0 234 16.1 290.0
±1 1792 13.2 220.0 359 15.5 44.0

±0.1 6143 11.4 76.0 1116 13.9 14.0
±0.01 19466 9.8 24.0 3834 12.1 4.7

Resolution Index = 2
Peak-To-Peak Noise-Free Noise-Free RMS Effective Effective

Range Noise Resolution Resolution Noise Resolution Resolution
volts 24-bit counts bits μV counts bits μV
±10 896 14.2 1100.0 192 16.4 240.0
±1 1280 13.7 160.0 274 15.9 34.0

±0.1 4223 12.0 52.0 856 14.3 11.0
±0.01 13319 10.3 16.0 2700 12.6 3.4

Res

 127

 128

Resolution Index = 4

Peak-To-Peak Noise-Free Noise-Free RMS Effective Effective
Range Noise Resolution Resolution Noise Resolution Resolution
volts 24-bit counts bits μV counts bits μV
±10 512 15.0 632.0 94 17.5 116.0
±1 640 14.7 79.0 123 17.1 15.0

±0.1 2112 13.0 26.0 422 15.3 5.2
±0.01 7613 11.1 9.4 1455 13.5 1.8

Resolution Index = 5
Peak-To-Peak Noise-Free Noise-Free RMS Effective Effective

Range Noise Resolution Resolution Noise Resolution Resolution
volts 24-bit counts bits μV counts bits μV
±10 320 15.7 395.0 67 17.9 82.0
±1 448 15.2 55.0 93 17.5 11.0

±0.1 1344 13.6 17.0 296 15.8 3.7
±0.01 5117 11.7 6.3 1055 14.0 1.3

Resolution Index = 6
Peak-To-Peak Noise-Free Noise-Free RMS Effective Effective

Range Noise Resolution Resolution Noise Resolution Resolution
volts 24-bit counts bits μV counts bits μV
±10 256 16.0 316.0 50 18.4 61.0
±1 320 15.7 39.0 59 18.1 7.3

±0.1 1088 13.9 13.0 189 16.4 2.3
±0.01 4030 12.0 5.0 735 14.5 0.9

Resolution Index = 7
Peak-To-Peak Noise-Free Noise-Free RMS Effective Effective

Range Noise Resolution Resolution Noise Resolution Resolution
volts 24-bit counts bits μV counts bits μV
±10 192 16.4 237.0 38 18.8 46.0
±1 256 16.0 32.0 51 18.3 6.3

±0.1 768 14.4 9.4 149 16.8 1.8
±0.01 2877 12.5 3.5 560 14.9 0.7

Resolution Index = 8
Peak-To-Peak Noise-Free Noise-Free RMS Effective Effective

Range Noise Resolution Resolution Noise Resolution Resolution
volts 24-bit counts bits μV counts bits μV
±10 128 17.0 160.0 33 19.0 41.0
±1 192 16.4 24.0 39 18.7 4.8

±0.1 512 15.0 6.3 108 17.2 1.3
±0.01 1985 13.0 2.4 438 15.2 0.5

Res Index = 9 (-Pro only)
Peak-To-Peak Noise-Free Noise-Free RMS Effective Effective

Range Noise Resolution Resolution Noise Resolution Resolution
volts 24-bit counts bits μV counts bits μV
±10 96 17.4 118.0 20 19.7 24.0
±1 124 17.0 15.0 21 19.6 2.6

±0.1 232 16.1 2.9 43 18.6 0.5
±0.01 1596 13.4 2.0 329 15.6 0.4

Res Index = 10 (-Pro only)
Peak-To-Peak Noise-Free Noise-Free RMS Effective Effective

Range Noise Resolution Resolution Noise Resolution Resolution
volts 24-bit counts bits μV counts bits μV
±10 54 18.2 67.0 10 20.6 13.0
±1 65 18.0 8.0 13 20.3 1.7

±0.1 124 17.0 1.5 27 19.3 0.3
±0.01 1108 13.9 1.4 216 16.2 0.3

Res Index = 11 (-Pro only)
Peak-To-Peak Noise-Free Noise-Free RMS Effective Effective

Range Noise Resolution Resolution Noise Resolution Resolution
volts 24-bit counts bits μV counts bits μV
±10 30 19.1 35.0 6 21.3 7.0
±1 30 19.1 3.5 6 21.3 0.8

±0.1 97 17.4 1.2 20 19.7 0.2
±0.01 1040 14.0 1.3 197 16.4 0.2

Res Index = 12 (-Pro only)
Peak-To-Peak Noise-Free Noise-Free RMS Effective Effective

Range Noise Resolution Resolution Noise Resolution Resolution
volts 24-bit counts bits μV counts bits μV
±10 21 19.6 26.0 4.2 22.0 5.0
±1 25 19.4 3.1 4.7 21.8 0.6

±0.1 97 17.4 1.2 20 19.7 0.2
±0.01 730 14.5 0.9 145 16.8 0.2

 129

C. Enclosure & PCB Drawings

nits are inches.

The square holes shown below are for a DIN rail mounting adapter: Tyco part #TKAD.

U

YTBD: Very similar to UE9.

 130

	Declaration of Conformity
	1. Installation on Windows
	1.1 Control Panel Application (LJControlPanel)
	1.2 Self-Upgrade Application (LJSelfUpgrade)

	2. Hardware Description
	2.1 USB
	2.2 Power and Status LED
	2.3 GND and SGND
	2.4 Vs
	2.5 10UA and 200UA
	2.6 AIN
	2.6.1 Channel Numbers
	2.6.2 Converting Binary Readings to Voltages
	2.6.3 Typical Analog Input Connections
	2.6.3.1 Signal from the LabJack
	2.6.3.2 Unpowered isolated signal
	2.6.3.3 Signal powered by the LabJack
	2.6.3.4 Signal powered externally
	2.6.3.5 Amplifying small signal voltages
	2.6.3.6 Signal voltages beyond ±10 volts (and resistance measurement)
	2.6.3.7 Measuring current (including 4-20 mA) with a resistive shunt
	2.6.3.8 Floating/Unconnected Inputs

	2.6.4 Internal Temperature Sensor

	2.7 DAC
	2.7.1 Typical Analog Output Connections
	2.7.1.1 High Current Output
	2.7.1.2 Different Output Ranges

	2.8 Digital I/O
	2.8.1 Typical Digital I/O Connections
	2.8.1.1 Input: Driven Signals
	2.8.1.2 Input: Open-Collector Signals
	2.8.1.3 Input: Mechanical Switch Closure
	2.8.1.4 Output: Controlling Relays

	2.9 Timers/Counters
	2.9.1 Timer Mode Descriptions
	2.9.1.1 PWM Output (16-Bit, Mode 0)
	2.9.1.2 PWM Output (8-Bit, Mode 1)
	2.9.1.3 Period Measurement (32-Bit, Modes 2 & 3)
	2.9.1.4 Duty Cycle Measurement (Mode 4)
	2.9.1.5 Firmware Counter Input (Mode 5)
	2.9.1.6 Firmware Counter Input With Debounce (Mode 6)
	2.9.1.7 Frequency Output (Mode 7)
	2.9.1.8 Quadrature Input (Mode 8)
	2.9.1.9 Timer Stop Input (Mode 9)
	2.9.1.10 System Timer Low/High Read (Modes 10 & 11)
	2.9.1.11 Period Measurement (16-Bit, Modes 12 & 13)

	2.9.2 Timer Operation/Performance Notes

	2.10 SPC (or VSPC)
	2.11 DB37
	2.11.1 CB37 Terminal Board
	2.11.2 EB37 Experiment Board

	2.12 DB15
	2.12.1 CB15 Terminal Board
	2.12.2 RB12 Relay Board

	 2.13 OEM Connector Options

	 3. Operation
	3.1 Command/Response
	 3.2 Stream Mode
	3.2.1 Streaming Digital Inputs, Timers, and Counters

	4. LabJackUD High-Level Driver
	4.1 Overview
	4.1.1 Function Flexibility
	4.1.2 Multi-Threaded Operation

	 4.2 Function Reference
	4.2.1 ListAll()
	4.2.2 OpenLabJack()
	4.2.3 eGet() and ePut()
	4.2.4 eAddGoGet()
	4.2.5 AddRequest()
	4.2.6 Go()
	4.2.7 GoOne()
	4.2.8 GetResult()
	4.2.9 GetFirstResult() and GetNextResult()
	4.2.10 DoubleToStringAddress()
	4.2.11 StringToDoubleAddress()
	4.2.12 StringToConstant()
	4.2.13 ErrorToString()
	4.2.14 GetDriverVersion()
	4.2.15 TCVoltsToTemp()
	4.2.16 ResetLabJack()
	4.2.17 eAIN()
	4.2.18 eDAC()
	4.2.19 eDI()
	4.2.20 eDO()
	4.2.21 eTCConfig()
	4.2.22 eTCValues()

	 4.3 Example Pseudocode
	4.3.1 Open
	4.3.2 Configuration
	4.3.3 Analog Inputs
	4.3.4 Analog Outputs
	4.3.5 Digital I/O
	4.3.6 Timers & Counters
	4.3.7 Stream Mode
	4.3.8 Raw Output/Input
	4.3.9 Easy Functions
	4.3.10 SPI Serial Communication
	4.3.11 I2C Serial Communication
	4.3.12 Asynchronous Serial Communication
	4.3.13 Watchdog Timer
	4.3.14 Miscellaneous

	 4.4 Errorcodes

	5. Low-Level Function Reference
	5.1 General Protocol
	 5.2 Low-Level Functions
	5.2.1 BadChecksum
	 5.2.2 ConfigU6
	 5.2.3 ConfigIO
	 5.2.4 ConfigTimerClock
	 5.2.5 Feedback
	 5.2.5.1 AIN: IOType=1
	5.2.5.2 AIN24: IOType=2
	 5.2.5.3 AIN24AR: IOType=3
	5.2.5.4 WaitShort: IOType=5
	5.2.5.5 WaitLong: IOType=6
	5.2.5.6 LED: IOType=9
	5.2.5.7 BitStateRead: IOType=10
	 5.2.5.8 BitStateWrite: IOType=11
	5.2.5.9 BitDirRead: IOType=12
	5.2.5.10 BitDirWrite: IOType=13
	 5.2.5.11 PortStateRead: IOType=26
	5.2.5.12 PortStateWrite: IOType=27
	5.2.5.13 PortDirRead: IOType=28
	5.2.5.14 PortDirWrite: IOType=29
	5.2.5.15 DAC# (8-bit): IOType=34,35
	5.2.5.16 DAC# (16-bit): IOType=38,39
	 5.2.5.17 Timer#: IOType=42,44,46,48
	5.2.5.18 Timer#Config: IOType=43,45,47,49
	5.2.5.19 Counter#: IOType=54,55

	 5.2.6 ReadMem (ReadCal)
	 5.2.7 WriteMem (WriteCal)
	 5.2.8 EraseMem (EraseCal)
	 5.2.9 SetDefaults (SetToFactoryDefaults)
	 5.2.10 ReadDefaults
	 5.2.11 Reset
	 5.2.12 StreamConfig
	 5.2.13 StreamStart
	 5.2.14 StreamData
	 5.2.15 StreamStop
	 5.2.16 Watchdog
	 5.2.17 SPI
	 5.2.18 AsynchConfig
	 5.2.19 AsynchTX
	 5.2.20 AsynchRX
	 5.2.21 I2C
	 5.2.22 SHT1X

	 5.3 Errorcodes

	A. Specifications
	 B. Noise & Resolution Tables
	 C. Enclosure & PCB Drawings

